
Star-P® Programming Guide
for Use with MATLAB®

Release 2.7
12/11/08

Release 2.7
Release 2.7 - 12/11/08

COPYRIGHT
Copyright © 2004-2008, Interactive Supercomputing, Inc. All rights reserved. Portions Copyright
© 2003-2004 Massachusetts Institute of Technology. All rights reserved.

Trademark Usage Notice
Star-P® and the "star" logo are registered trademarks of Interactive Supercomputing, Inc.
MATLAB® is a registered trademark of The MathWorks, Inc. Other product or brand names are
trademarks or registered trademarks of their respective holders. ISC's products are not
sponsored or endorsed by The MathWorks, Inc. or by any other trademark owner referred to in
this document.
ii Star-P® Programming Guide for Use with MATLAB® Release 2.7

Contents
Star-P® Introduction
Extending MATLAB with Star-P® . 2
Parallel Computing Basics . 4
About the Star-P® Programming Guide for Use with MATLAB® 5

Starting Star-P® with MATLAB
Getting Help at the IDE Window . 7

Using the HTML-Based Help . 8
Using the Text-Based Help . 8
Getting Command Syntax Information . 8

Syntax grammar and conventions used in the Star-P® documentation 9
Get syntax information for a particular function . 9

Starting Star-P® on a Linux Client System. 9
Starting Star-P® on a Windows Client System. 10
Star-P® Dashboard . 11
Star-P® Sample Session . 13
User Specific Star-P® Start-Up Configuration . 14
Star-P® Start-Up Command Line Options . 15

Launching Star-P® with a MATLAB .m script. 19
Cluster Configurations . 19

Data Parallelism with Star-P® and MATLAB
Star-P® Naming Conventions . 22
Examining Star-P® Data . 22

Reusing Existing Scripts . 23
Examining/Changing Distributed Matrices . 24

Special Variables: p and np . 24
Assignments to p . 26

Supported Data Types . 27
Real and Complex Data . 27

Creating Distributed Arrays . 28
The *p Syntax. 28
Distributed Data Creation Routines . 29
Distributed Array Bounds . 30
Indexing into Distributed Matrices or Arrays . 30

Types of Distributions . 32
Distributed Dense Matrices and Arrays . 32

Row distribution . 33
Column distribution. 33

Distributed Dense Multidimensional Arrays . 34
Distributed Sparse Matrices . 34

How Star-P® Represents Sparse Matrices . 35
Release 2.7 Star-P® Programming Guide for Use with MATLAB® 1

Distributed Cell Objects (dcell) . 36
Combining Data Distribution Mechanisms . 36
Mixing Local and Distributed Data . 37
Distributed Classes used by Star-P® . 38
Propagating the Distributed Attribute . 41

Propagation of Distribution. 44
Functions of One Argument . 44
Functions of Multiple Arguments . 45

Indexing Operations . 48
Summary for Propagation of Distribution . 49

Explicit Data Movement with ppback and ppfront . 49
Loading And Saving Data on the Parallel Server. 51

HDF5, Hierarchical Data Format Version 5 . 53
Representation of data in the HDF5 file . 55
Limitations . 56
Differences from MATLAB HDF5 support . 56
Converting data from other formats to HDF5 . 56

Task Parallelism with Star-P® and MATLAB
The ppeval Function: The Mechanism for Task Parallelism 59
Star-P® Naming Conventions . 60
Transforming a for Loop into a ppeval Call . 61

Step 1: Identify a for loop that is embarrassingly parallel. 61
Step 2: Determine the input and output variable of the loop 61
Step 3: Transform the body of the for loop into a function 62
Step 4: Call function defined in Step 3 with ppeval . 62

ppeval Syntax and Behavior . 63
ppeval Syntax Grammar . 63
Requirements of Functions Passed to ppeval . 64
Input Arguments. 64

Default Behavior. 64
Splitting. 64
Broadcasting . 65
Supported Input Argument Types . 65
Serial ppeval of Functions with Scalar Inputs. 65
Client vs. Server Variables . 66
Distribution of input variables . 67

Output Arguments . 67
Examples of ppeval Usage . 68

ppevalsplit . 69
Choosing Your Task Parallel Engine (TPE) . 70

Star-P® M TPE. 71
Star-P® Octave Engine . 71
C/C++ Engine for Running Compiled C/C++ Package Functions 72

Per Process Execution. 72
Calling Non-”M” Functions from within ppeval . 73
Workarounds and Additional Information. 75

String Arrays . 75
Splitting on a Scalar . 75
2 Star-P® Programming Guide for Use with MATLAB® Release 2.7

Global Variables. 75

Tips and Tools for High Performance Star-P® Code
Performance and Productivity . 77
Tips for Data Parallel Code . 79

Vectorization . 79
Star-P® Solves the Breakdown of Serial Vectorization 82

Solving Large Problems: Memory Issues. 84
Tips for Task Parallel Code . 85

Use of Structs and Cell Arrays . 85
Vectorize for Loops Inside of ppeval Calls . 86
Performance Note on Iteration Timing . 87

Using External Libraries. 89
Integer Arithmetic in Star-P® Compared with MATLAB® . 89
Accuracy of Star-P® Routines . 89
Configuring ppsetoption for High Performance . 90
Performance Tuning and Monitoring . 91

Diagnostics and Performance . 91
Client/Server Performance Monitoring . 91

Coarse Timing with pptic and pptoc . 91
Summary and Per-Server-Call Timings with ppprofile 94
Maximizing Performance . 98

Maintaining Awareness of Communication Dependencies 98
Communication between the Star-P® Client and Server 98
Implicit Communication . 99
Communication Among the Processors in the Parallel Server. 101

Enhanced Performance Profiling in Star-P® . 103
Using ppperf . 103
Interpretation of ppperf's output . 108
Using ppperf's graphical mode. 113
Using ppperf to Eliminate Performance Bottlenecks . 117
ppperf command summary. 131

UNIX Commands to Monitor the Server. 132

Star-P® Functions
Basic Server Functions Summary . 135

General Functions . 138
fseek. 138
np . 139
p . 139
pp . 139
ppbench . 139
ppclear . 140
ppgetoption . 141
ppsetoption. 141
ppgetlog . 141
ppgetlogpath . 142
ppinvoke. 143
pploadpackage. 143
Release 2.7 Star-P® Programming Guide for Use with MATLAB® 3

ppunloadpackage. 144
ppfopen . 145
ppquit . 145
ppwhos. 145
pph5whos. 146

Data Movement Functions . 147
ppback . 147
ppfront . 148
ppchangedist . 148
pph5write . 149
pph5read . 150
ppload . 150
ppsave . 151

Task Parallel Functions . 151
bcast, ppbcast . 151
split, ppsplit. 152
ppeval. 152
ppevalsplit . 154
ppevalcloadmodule . 154
ppevalcunloadmodule . 154

Performance Functions . 155
ppperf . 155
ppprofile . 156
pptic/pptoc . 157

Supported MATLAB® Functions
Data Parallel Functions Listed Alphabetically . 161
Task-Parallel Functions Listed by Default Platform TPE . 170

Application Examples
Application Example: Image Processing Algorithm . 207

How the Analysis Is Done . 207
Application Examples. 208

Images For Application Examples . 208
M Files for the Application Examples . 208
Application Example Not Using Star-P® . 209

patmatch_color_noStarP.m File . 210
patmatch_calc.m . 211

Application Example Using Star-P® . 212
patmatch_colordemo_StarP.m File . 212

Application Example Using ppeval. 213
About ppeval . 213
About the ppeval Example . 213
patmatch_color_ppeval.m . 214

Solving Large Sparse Matrix and Combinatorial Problems with Star-P®

Graphs and Sparse Matrices . 217
Graphs: It’s all in the connections . 217
Sparse Matrices: Representing Graphs and General Data Analysis 219
4 Star-P® Programming Guide for Use with MATLAB® Release 2.7

Data Analysis and Comparison with Pivot Tables . 220
Laplacian Matrices and Visualizing Graphs . 223

On Path Counting . 224
Release 2.7 Star-P® Programming Guide for Use with MATLAB® 5

6 Star-P® Programming Guide for Use with MATLAB® Release 2.7

Chapter 1
Star-P® Introduction

Star-P® drives productivity by significantly increasing application performance while keeping
development costs low. It is intended for scientists, engineers and analysts with large and
complex problems that cannot be solved productively on a desktop computer. The Star-P®
software platform seamlessly integrates desktop clients with high-performance servers. By
offloading computation, memory and file intensive operations to the server, Star-P® enables
easy to use desktop application development, while creating the potential for execution at
supercomputer speeds.

Star-P® extends easy to use Very High Level Languages (VHLLs) such as MATLAB®1 and
Python to support simple, user-friendly parallel computing on a spectrum of computing
architectures: multi-core desktops and servers, large shared memory servers, and clusters.
Star-P® fundamentally transforms the workflow, substantially shortening the “time to solution”
by allowing the user to easily adapt their application for use on parallel resources.

This chapter provides an overview of using Star-P® in the MATLAB® VHLL environment. It
includes sections on the following topics:

• “Extending MATLAB with Star-P®” describes how Star-P® parallelizes MATLAB
programs with minimal modification.

• “Parallel Computing Basics” introduces you to the various domains of parallel
computing and how Star-P® fits into various domains.

• “About the Star-P® Programming Guide for Use with MATLAB®” summarizes the
topics covered in this document.

1. MATLAB® is a registered trademark of The MathWorks, Inc. Star-P® and the "star" logo are reg-
istered trademarks of Interactive Supercomputing, Inc. Other product or brand names are trade-
marks or registered trademarks of their respective holders. ISC's products are not sponsored or
endorsed by The MathWorks, Inc. or by any other trademark owner referred to in this docu-
ment.
Release 2.7 Star-P® Programming Guide for Use with MATLAB® 1

Extending MATLAB with Star-P®
Extending MATLAB with Star-P®

With Star-P®, existing MATLAB scripts and functions can be re-used to run larger problems in
parallel with minimal modification, and new parallel MATLAB code can be developed in a
fraction of the time normally required to develop parallel applications in traditional
programming languages, such as C, C++, or Fortran with MPI. Parallel programming with
Star-P® in MATLAB requires learning a bare minimum of additional programming constructs.
Implementing Data Parallelism with Star-P® does not require the addition of any new
functions to your MATLAB code, and adding Task Parallelism requires only one additional
construct.

To implement Data Parallelism, Star-P® overloads ordinary MATLAB commands with the *p
construct. This simply multiplies (*) array dimension(s) by a symbolic variable (p) denoting
that a matrix dimension is to be distributed. A class of overloaded MATLAB programs
becomes parallel with the insertion of this construct. The *p syntax tells data construction
routines (for example, rand) to build the matrix on the parallel HPC back-end, and perform
the indicated operation (for example, matrix inversion) there as well. Creating a distributed
random matrix and taking its inverse with MATLAB can be expressed with the following two
lines of code:

A = rand(100,100);
B = inv(A);

To express the same operations in Data Parallel using Star-P®, requires only one slight
change:

App = rand(100,100*p);
Bpp = inv(App);

Once the *p construct has been applied to a variable, all subsequent operations on that
variable will occur in parallel on the HPC and result in new variables that are also resident on
the HPC. This important inheritance feature of Star-P® allows you to parallelize your MATLAB
code with minimal effort. For more information on distributed data operations, see “Data
Parallelism with Star-P® and MATLAB”.

For implementing Task Parallel functionality, Star-P® introduces the ppeval function into
MATLAB. The ppeval function, which is called in a similar manner as the MATLAB function
feval, allows one to pass a string containing a valid MATLAB function foo as well as all of
foo’s calling arguments. The ppeval function then packages foo, along with all functions
called within foo, and ships those functions to the HPC server. The calling arguments of foo
are also shipped to the HPC and can be either broadcast to all processors using the bcast
function or split amongst the processors using the split function.

The following code is an example usage of the ppeval function:

App = rand(100,100,100*p);
2 Star-P® Programming Guide for Use with MATLAB® Release 2.7

Extending MATLAB with Star-P®
Bpp = ppeval('inv',App);

Or equivalently:

Bpp = ppeval('inv',split(App,3));

In this example, the ppeval call splits the variable App into 100 individual slices (along the
last dimension). The slices are divided among available processors on the server, and then
each processor iterates over its received slices, performing an inv operation on each slice.
The results from all processors are then combined, preserving original order, and returned as
the output variable. More information about task parallel functionality can be found in “Task
Parallelism with Star-P® and MATLAB”

To use Star-P® with MATLAB, the user needs only one copy of the Mathworks’ product to
serve as a front-end, which need not be the parallel machine. No copies of MATLAB are
required on the parallel computer.

Users have the benefit of working in the familiar MATLAB environment. When new releases
of MATLAB are distributed, the user merely plugs in the new copy and Star-P® continues to
execute.

Despite Star-P®’s ability to add functionality for distributed matrices and parallel operations,
don’t forget that you are still using MATLAB as your desktop development tool. This means
that you can run an existing MATLAB program in Star-P® with almost no changes, and it will
run strictly on your desktop (client) machine, never invoking the Star-P® system after
initialization. Of course, this would be a waste of HPC resources, if you ran this way all the
time. But it is a convenient way of porting the compute-intensive portions of your code one at
a time, allowing the unported portions to execute in MATLAB proper.

In the Star-P® context, there are many features of the MATLAB environment that are still
relevant for developing applications with distributed objects and operations. The MATLAB
debugger and the script and function editor are two of the most useful MATLAB functions
when you’re programming with Star-P®. The designers of Star-P® have taken great pains to
fit within the MATLAB mindset, using the approach “It’s still MATLAB.” So if you’re wondering
whether a MATLAB operation works in Star-P®, just try it. Most operations work in the
obvious way.

Note: If a MATLAB function that has high value for you does not work, please let us
know via support@interactivesupercomputing.com

Star-P® greatly simplifies the parallelization of new and existing MATLAB code by allowing
the user to either run code on the local MATLAB client or on the HPC back-end appropriately
taking advantage of the respective strengths.
Release 2.7 Star-P® Programming Guide for Use with MATLAB® 3

Parallel Computing Basics
Parallel Computing Basics

This section reviews various domains of parallel computing. We present these concepts for
users who are new to parallel computing and then discuss their implementation by Star-P®.

Parallel computing textbooks list many models for parallelizing programs, including:

• Data Parallel Computation

• Message Passing

• Task Parallel Computation

You may wish to go to a website that has several points related to parallel computing, such
as, http://beowulf.csail.mit.edu/18.337 or any of the numbers of textbooks that cover these
topics. In brief, the current version of Star-P® is best expressed as a data parallel language or
a global array language. The prototypical example of data parallelism is matrix addition:

Cpp = App + Bpp;

where App and Bpp are matrices. When we add two n-by-n matrices, we perform n2 data
parallel additions. In other words, we perform the same operation (addition) simultaneously
on each of the n2 numbers.

The name “data parallel” is often extended to operations that have communication of
dependencies among some of the operations, but at some level can be viewed as identical
operations happening purely in parallel. Two simple examples are matrix multiplication
(Cpp=App*Bpp) and prefix sums (Dpp=cumsum(App)).

A beneficial description of Star-P® for many users is that Star-P® is a global array syntax
language. By providing a global array syntax in Star-P®, the user variable App refers to the
entirety of a distributed object on the back end server. The abstraction of an array that
contains many elements is a powerful construct. With one variable name such as App, you
are able to package up a large collection of numbers. This construct enables higher level
mathematical operations expressed with a minimal amount of notation. On a parallel
computer, this construct allows you to consider data on many processors as one entity.

By contrast, message passing or “node-oriented” languages force you as a programmer to
consider only local data and create any global entity completely outside the scope of the
language. Data is passed around through explicit calls to routines such as send and
receive or SHMEM get and put. The lack of support for the global entity places more of a
cognitive burden on you, the programmer. Star-P® allows users to implement their programs
in parallel without having to master the intricacies of MPI in Fortran, C, or C++.

“Task parallel” or “embarrassingly parallel” computations are those operations where there is
little or no dependency among the computational pieces. Each piece can easily be placed on
a distinct processor. While not strictly required, such computations typically depend on a
4 Star-P® Programming Guide for Use with MATLAB® Release 2.7

About the Star-P® Programming Guide for Use with MATLAB®
relatively small amount of input data, and produce relatively small amounts of output data. In
such circumstances, the implementation may not store any persistent data on distributed
memory. An example is Monte Carlo simulation of financial instruments, where the
calculations for each sample are done completely in isolation from every other sample. While
Star-P® may be considered a data parallel language, it also has task parallel functionality
through the use of its ppeval operation.

Most of the operations for which Star-P® will deliver good performance will be operations on
global arrays, so most of this document treats arrays as global arrays. An important exception
to this is the ppeval function, which supports task parallelism and works on global arrays,
but in a less straightforward manner. A global array that is an input to the ppeval function is
partitioned into sections, each of which is converted to an array that is local to a single
instance of a MATLAB function on a single processor. The reverse process is used for output
arrays; the assemblage of the sections into global arrays.

About the Star-P® Programming Guide for Use with MATLAB®

The remainder of this document provides chapters that cover the following topics:

• “Starting Star-P® with MATLAB” takes you through a sample session to illustrate
how to start up Star-P® from a graphical or command line interface with various
command-line options. A simple program is shown that illustrates the use of
Star-P®’s ability to parallelize MATLAB code.

• “Data Parallelism with Star-P® and MATLAB” describes Star-P®’s global-array
language capabilities for creating, manipulating, loading and saving large distributed
data.

• “Task Parallelism with Star-P® and MATLAB” describes Star-P®’s ppeval function
for performing embarrassingly parallel operations on either local or distributed data.

• “Tips and Tools for High Performance Star-P® Code” provides suggestions for
maximizing the performance of code written for both data and task parallel
computations, and describes tools for monitoring and profiling MATLAB code using
Star-P®.

• “Star-P® Functions” summarizes functions that are not part of the standard MATLAB
language and describes their implementation.

• “Supported MATLAB® Functions” lists the MATLAB functions that are supported in
both data and task parallel modes, as well as MATLAB toolbox functions that are
supported only in task parallel computations.
Release 2.7 Star-P® Programming Guide for Use with MATLAB® 5

About the Star-P® Programming Guide for Use with MATLAB®
6 Star-P® Programming Guide for Use with MATLAB® Release 2.7

Chapter 2
Starting Star-P® with MATLAB

This chapter is intended for users who have a working Star-P® installation on a client system
as well as a high performance computing server. It includes the following topics:

• "Getting Help at the IDE Window" explains how to use and invoke help.

• "Starting Star-P® on a Linux Client System" provides information for users running
Star-P® under Linux.

• "Starting Star-P® on a Windows Client System" provides information for users running
Star-P® under Windows

• "Star-P® Dashboard" includes information on a graphic window provided by Star-P®
for monitoring server status at start-up and a means of killing a Star-P® server
session.

• "Star-P® Sample Session" walks you through a few short example operations that
can be performed in a working Star-P® session.

• "User Specific Star-P® Start-Up Configuration" includes information for users
wishing to configure particular start-up options within a start-up script.

• "Star-P® Start-Up Command Line Options" provides information about launching a
desired Star-P® session from a terminal command prompt.

Getting Help at the IDE Window

When working at the IDE, you can invoke online help in the following ways:

• Using the HTML-Based Help

• Using the Text-Based Help

• Getting Command Syntax Information
Release 2.7 Star-P® Programming Guide for Use with MATLAB® 7

Getting Help at the IDE Window
Using the HTML-Based Help

You can get Star-P® HTML-based help within the MATLAB IDE by entering the starpdoc
command.

>> starpdoc rosser

You can also get information on how to use starphelp by using the MATLAB command help.
For example:

>> help starpdoc
starpdoc Get browser-displayed help related to Star-P® parallel computing

Syntax 1:

starpdoc % Bring up the main Star-P® online help page

Syntax 2:

starpdoc <Star-P®-M-function-name> | <Star-P®-M-library-name> | syntax

Using the Text-Based Help

You can get Star-P® HTML-based help within the MATLAB IDE by entering the starpdoc
command.

>> starphelp rosser

You can also get information on how to use starphelp by using the MATLAB command help.
For example:

>> help starpdoc
starpdoc Get text-display help related to Star-P® parallel computing

Syntax 1:

starphelp % Bring up the main list of Star-P® help

Syntax 2:

starphelp <Star-P®-M-function-name> | <Star-P®-M-library-name> | syntax

Getting Command Syntax Information

You can get Star-P®-specific conventions and syntax information by way of the following
methods:

• Syntax grammar and conventions used in the Star-P® documentation

• Get syntax information for a particular function
8 Star-P® Programming Guide for Use with MATLAB® Release 2.7

Starting Star-P® on a Linux Client System
Syntax grammar and conventions used in the Star-P® documentation

For general syntax grammar usage and conventions, you can invoke either starphelp or
starpdoc using the <syntax> option.

>> starphelp syntax

Syntax Grammar Conventions for Star-P® M Documentation
--

Convention... Meaning...

Get syntax information for a particular function

You can individual functions by calling either form of Star-P® help with a function name as its
argument.

>> starphelp rosser
cross Return the cross product of two vectors

Syntax 1:
<vector-cross-product> = cross(<input-vector-1> , <input-vector-1>)

Starting Star-P® on a Linux Client System

Your system administrator will usually have installed the Star-P® software on the systems
(client(s) and server) you will be running on in advance. The default location of the starp
software is /usr/local/starp/<version>. Assuming this install location is in your shell
path, then the following sequence will start the Star-P® client (on a system named
your_system) and connect to the Star-P® server configured by the administrator, which
happens to be a system named remote_server.

your_system% starp
user@remote_server’s password: **********
 < M A T L A B >
 Copyright 1984-2009 The MathWorks, Inc.

 To get started, type one of these: helpwin, helpdesk, or demo.
 For product information, visit www.mathworks.com.

Connecting to Star-P® Server with 2 processes

Star-P® Version 2.7.0
(C) 2004-2008, Interactive Supercomputing, Inc. All rights reserved.
Portions (C) Copyright 2003-2004 Massachusetts Institute of Technology. All
rights reserved.
Release 2.7 Star-P® Programming Guide for Use with MATLAB® 9

Starting Star-P® on a Windows Client System
By using this software you agree to the terms and conditions described
in the license agreement. Type help agreement
client log file: /home_directory/.starp/log/2008_04_05_1111_54/starpclient.log
 >>

As you can see, the HPC server will typically require a password for user authentication. You
will either need to supply this password upon every start-up or configure SSH so it is not
needed on every session initiation. Otherwise, there are few visible signs that the Star-P®
server is running on a distinct machine from your client.

This last line (“>>”) is the MATLAB prompt. At this point you can type the commands and
operators that you are familiar with using from prior MATLAB experience, and can start to use
the Star-P® extensions described in “Data Parallelism with Star-P® and MATLAB” and “Task
Parallelism with Star-P® and MATLAB”.

A full description of the starp command and its command line options is provided in the
section “Star-P® Functions”, or by typing the following at the command prompt:

$./starp --help

Starting Star-P® on a Windows Client System

By default, the Star-P® installation on a Windows XP system will create a shortcut on the
desktop, as well as an entry in the list of programs under the Windows Start menu.

The default location for the Star-P® programs will be C:\Program Files\starp; if you
can’t find them there, check with your system administrator to see if an alternate location was
used. For installation instructions, see the “Star-P® Installation and Configuration Guide”.

To invoke the Star-P® software, either double-click the desktop icon, or click on:

Start -> All Programs -> Star-P® Client Software -> Star-P® M Client
Figure 2-1 Star-P® Desktop icon
10 Star-P® Programming Guide for Use with MATLAB® Release 2.7

ISC_StarP_Install_Config_R26.pdf
ISC_StarP_Install_Config_R26.pdf
ISC_StarP_Install_Config_R26.pdf

Star-P® Dashboard
Figure 2-2 Star-P® Login screen

If passwordless SSH has not been configured for the user name in your current Star-P®
properties configuration file (the default file being starpd.properties), a dialogue box will
appear prompting you for a password. If no user name appears in the configuration file, then
the user name associated with your current Windows session will be utilized.

Once the connection has been established, MATLAB will start, with Star-P® enabled.

Star-P® can also be started from a Windows command line prompt using the starp
command. A full description of the starp command and its options is provided in the section
“Star-P® Start-Up Command Line Options”, or type starp --help at the Windows
command line.

Star-P® Dashboard

The Star-P® Dashboard is designed to

• inform the user of the progress of Star-P® server startup

• inform the user of the connection status of the Star-P® client and server

• provide an interface to allow the user to kill the server should it be necessary.
Release 2.7 Star-P® Programming Guide for Use with MATLAB® 11

Star-P® Dashboard
Figure 2-3 Star-P® Dashboard Interface

The Server Status window displays information about the server startup process and
information about the success or failure of Kill button operations.

The Server Status window displays information about the server startup process, information
about connectivity to the server, and information about the success or failure of kill button
operations.

The server status light on the dashboard provides a simple visual indicator representing the
primary set of possible states. At any time, it may display one of the following values:

• Server Initializing

• Server Ready

• Server Busy

• Connection Lost

During the start-up phase, the dashboard will indicate that the server is initializing. Then
when a command is submitted to the server, it switches to the “busy” state, and returns to the
“ready” state when the command completes. If connectivity to the server is lost at any time,
this will be reflected by the status light. Connectivity is tested by periodic heartbeats that pass
between the client and the server.

By default, the dashboard always appears when connecting to the Star-P® server. The
dashboard can then be hidden or shown using the following pair of commands, which take no
arguments:

ppshowdashboard
pphidedashboard

If you desire to change the default settings for dashboard initialization, then you can
uncomment the environment variable line starpd.dashboard.no_gui=1 in the
12 Star-P® Programming Guide for Use with MATLAB® Release 2.7

Star-P® Sample Session
starpd.properties file, located in the /<Star-P® install directory>/config
directory. By initializing a Star-P® session with this setting, the Star-P® dashboard is not
accessible during that Star-P® session.

The Kill Star-P® Server button is not intended for routine use, but only for situations where the
user is unable to exit Star-P® in the usual way. Upon pressing the Kill Star-P® Server button,
the user will click Yes when the confirmation dialog appears.

Figure 2-4 Star-P® Kill Button Confirmation

The Star-P® Dashboard opens set to Always On Top mode. However it can be minimized or
the user can unset Always On Top using the View menu.

If you are running Star-P® on a system without graphical display capability (for example, a
UNIX shell with no DISPLAY environment set), the Dashboard will not be visible or
accessible.

Star-P® Sample Session

The use of Star-P® can best be illustrated with a sample session:

First, we check to see whether the server is alive, and the number of processes running.

>> np
ans =
8

Next, we create a 100x100 random dense matrix distributed by columns.

>> App = rand(100,100*p);
App =
 ddense object: 100-by-100p
Release 2.7 Star-P® Programming Guide for Use with MATLAB® 13

User Specific Star-P® Start-Up Configuration
Then, we create a 100x100 random dense matrix distributed by rows.

>> Bpp = randn(100*p,100);

Using a standard MATLAB instruction, we can solve the system AX=B:

>> Xpp = App\Bpp;

Now we can check the accuracy of our answer.

>> norm(App*Xpp-Bpp)
ans =
3.4621e-13

Next we can get information about variables in our current workspace.

>> ppwhos
Your variables are:
 Name Size Bytes Class
 App 100x100p 80000 ddense array
 Bpp 100px100 80000 ddense array
 Xpp 100px100 80000 ddense array
 ans 1x1 8 double array
Grand total is 30001 elements using 240008 bytes
MATLAB has a total of 1 elements using 8 bytes

Star-P® server has a total of 30000 elements using 240000 bytes

Finally, to end Star-P® execution, you can use either the quit or the exit command:

 >> quit
your_system =>

At this point you are ready to write a Star-P® program or port a MATLAB program to Star-P®.

User Specific Star-P® Start-Up Configuration

You may have a set of Star-P® options that you want to choose every time you run Star-P®.
Just as MATLAB will execute a startup.m file in the current working directory when you
start MATLAB, Star-P® will execute a ppstartup.m file. Note that Star-P® itself executes
some initial commands to create the link between the Star-P® Client for use with MATLAB
and the Star-P® server. The ppstartup.m file will be executed after those Star-P®
initialization commands. Thus the order of execution is:

• startup.m % MATLAB configuration commands

• Star-P®-internal initialization commands

• ppstartup.m % Your Star-P® configuration commands
14 Star-P® Programming Guide for Use with MATLAB® Release 2.7

Star-P® Start-Up Command Line Options
For example, this mechanism can be useful for choosing a particular sparse linear solver to
use (see “ppsetoption” documentation in “Star-P® Functions”) or for loading your own
packages (see the “Star-P® Software Development Kit (SDK) Tutorial and Reference
Guide”).

Star-P® Start-Up Command Line Options

Star-P® can be used with default options enabled, but advanced users might prefer to
override defaults at start-up time. The start-up executable is named starp. The starp
application reads its default start-up options from the starpd.properties file. For
information on how to edit these properties directly, please see the section titled
Administration Topics in the Star-P® Installation and Configuration Guide.

Note: You can get help regarding Star-P® startup options by executing the following
command: starp --help.

 The starp executable provides the following command line options:

• -a, --hpcaddress hpcaddress[node1,node2,node3,...,nodeN]

Hostname or address of HPC to which to connect. Also may be a comma delimited list
of machines comprising a cluster, head node first.

• -c, --config config_file

The configuration file to load.

• -d <pack> | <scatter>

Distribute Star-P® processes when not using a workload manager. Where acceptable
values are one of the following:

• -e, --serverenv <serverenv>

Environment variables to be set on the server

• -f, --filter

Option Value Description

scatter Distribute processes in a round-robin fashion. Default.

pack Fill up individual nodes before allocating processes on
additional nodes.
Release 2.7 Star-P® Programming Guide for Use with MATLAB® 15

ISC_StarP_SDK_Tutorial_R26.pdf
ISC_StarP_SDK_Tutorial_R26.pdf
ISC_StarP_SDK_Tutorial_R26.pdf
ISC_StarP_SDK_Tutorial_R26.pdf
ISC_StarP_SDK_Tutorial_R26.pdf

Star-P® Start-Up Command Line Options
Run MATLAB in filter mode so that it reads from stdin and writes to stdout, for
testing.

• -h, --help

Print help text associated with the other arguments you provide.

• -j, --wlmargs <wlmargs>

Arguments to be passed to the Workload Manager. These arguments will override
default Workload Manager options normally supplied by Star-P®.

• -l, --license <license>

Specify the location of the license file (overriding LM_LICENSE_FILE)

• -m, --machine <machine>

Specify a machine file (must be a client side file)

• -o, --cfgopt <cfgopt=value>

Set a configuration file option

• -p, --numprocs numprocs

Number of processes to request.

• -q, --wlmqueue <wlmqueue>

Workload Manager queue to be used by this Star-P® session

• -r, --startcommand <startcommand>

Start Star-P® and execute the command <startcommand>

• -s, --starppath starp_path

Path to Star-P® installation on the HPC

• --sshport <sshport>

Specify a non-standard SSH port for communication with the HPC server

• -t, --datadir data_path

Path that will be used by the HPC Server for file I/O. Star-P® HPC Server reads and
writes data to the directory you specify with this path.

• -u, --hpcuser
16 Star-P® Programming Guide for Use with MATLAB® Release 2.7

Star-P® Start-Up Command Line Options
username used to SSH to HPC

• -v, --version

Print the Star-P® version number and exit

• -w, --wlmextra <wlmextra>

Extra arguments to be passed to the Workload Manager, will not override Workload
Manager options normally supplied by Star-P®.

• -x, --exclude <exclude>

Specify which nodes of a cluster not to use (mutually exclusive with “use”)

• -z, --use <use>

Specify which nodes of a cluster to use (mutually exclusive with “exclude”)

When running in a cluster, it is also useful to understand the precedence order of potential
machine files.

• Any nodes specified in a machine file passed in using -m, or specified in a -x or -z
option that are not also included in the default machine file, will not be used by
<starp>.

• A user default machine file
(~/.starp/.config/machine_file.user_default) by default, or,
<starp-usr-config>/<usr>/ if overwritten during the installation, will take
precedence over the system default machine file
(<StarP_dir>/config/machine_file.system_default) and will not need
to represent a subset of the system default machine file.

• -m,--machine machine_file_path

The path to a machine file to be used for this instance of starp. The file format is one
machine name per line, with no empty lines at the end of the file. node specified by -a
argument must be included in the file. Example contents of this file would be: node1
node2 ... nodeN

• -x,--exclude [node] or [node1,node2,...,nodeN] or
[node2-nodeN]

Exclude a node, a set of nodes or a range of nodes from the current instance of starp.
This argument will be used as a modifier against either a machine file passed in using
the -m argument, or against either the user's or the system's default machine file. This
flag is mutually exclusive with -z.

• -z,--use [node] or [node1,node2,...,nodeN] or [node2-nodeN]

Use a node, a set of nodes or a range of nodes for the current instance of starp. This
argument will be used as a modifier against either a machine file passed in using the
Release 2.7 Star-P® Programming Guide for Use with MATLAB® 17

Star-P® Start-Up Command Line Options
-m argument, or against either the user's or the system's default machine file. This flag
is mutually exclusive with -x.

By providing command-line options, you can override some of the information normally
supplied by the starpd.properties file. The following example shows the minimal set of
command-line options required for running Star-P®. In this case, the command would cause
MATLAB to start up, running eight Star-P® Server processes on a machine with the
hostname altix as the user joe:

starp -a altix -p 8 -s /usr/local/starp -u joe -t /home/joe

Examples

The following are useful examples:

• If you are running on a cluster and you want to specify a list of nodes in the cluster
to be excluded from a particular run of <starp> (perhaps node3 and node7 are
down for maintenance), your <starp> command line would look like this:

starp -a node1 -x node3,node7 -p 8 -s /usr/local/starp -u joe -t /home/joe

Using this command line, a new machine file for this one run of <starp> will be
generated using the default machine file, but with node3 and node7 removed.

Note: If node3 or node7 are not members of the default machine file, they will be ignored
as defined in Cluster Configurations at the end of this section.

• If you are running on a cluster and you want to specify a range of nodes in the cluster
to be excluded from a particular run of <starp> (perhaps a rack of nodes has been
taken offline), your <starp> command line would look like this:

starp -a node1 -x node3-node14 -p 8 -s /usr/local/starp -u joe -t /home/joe

Using this command line, a new machine file for this one run of <starp> will be
generated using the default machine file, but with node3 through node14 utilized.

Note: If either node3 or node14 are not members of the default machine file, <starp>
will return a "bad range" error.

Note: If node14 appears before node3 in the default machine file, <starp> will return
a "bad range" error.

• If you are running on a cluster and you want to specify a custom machine file for a
particular run of <starp>, your <starp> command line would look like this:

starp -a node1 -m [machine file path] -p 8 -s /usr/local/starp -u joe -t
/home/joe

Using this command line, the machine file specified by [machine file path] will
be used for this one run of <starp>.
18 Star-P® Programming Guide for Use with MATLAB® Release 2.7

Star-P® Start-Up Command Line Options
Note: The machine file specified by [machine file path] must represent a subset of the
user's or system's default machine file.

• If you are running on a cluster and you want to specify a custom machine file for a
particular run of <starp> and you only want to use a subset of that machine file,
your <starp> command line would look like this:

starp -a node1 -m [machine file path] -z node3-node14 -p 8 -s /usr/local/starp
-u joe -t /home/joe

Using this command line, the machine file specified by [machine file path] will be used
for this one run of <starp>.

Note: The machine file specified by [machine file path] must represent a subset
of the user's or system's default machine file.

Note: If either node3 or node14 are not members of the default machine file, <starp>
will return a "bad range" error.

Note: If node14 appears before node3 in the default machine file, <starp> will return
a "bad range" error.

Launching Star-P® with a MATLAB .m script

A limited form of batch processing can be used in Star-P® that is separate from the realm of
full workload management systems that are also supported by Star-P®. This process involves
use of command line options listed above as well as the name of a desired script you wish to
run within your VHLL environment. If you wish to run a .m script named myscript.m, you
would redirect the contents of a MATLAB .m file into the starp command like this:

starp -a server -u user -p 4 -t . -s /usr/local/starp-<version> < myscript.m

Cluster Configurations

There are 2 files and several command line arguments that can affect cluster configuration.

• If no machine_file.user_default exists, the system will create one for the
current session containing only the name of the current machine.

• If a machine_file.system default exists, a machine_file.user_default
does not exist, and no (related) command line args are specified, then the
machine_file.system_default will be used.

• If a machine_file.user_default exists, it takes precedence over any
machine_file.system_default file.

• If command line args are used, the args must represent a subset of the selected
machine_file.
Release 2.7 Star-P® Programming Guide for Use with MATLAB® 19

Star-P® Start-Up Command Line Options
20 Star-P® Programming Guide for Use with MATLAB® Release 2.7

Chapter 3
Data Parallelism with Star-P® and MATLAB

This chapter contains information on creating, manipulating, loading, and saving data in
parallel and includes the following:

• "Star-P® Naming Conventions"

• "Examining Star-P® Data"

• "Special Variables: p and np"

• "Supported Data Types"

• "Creating Distributed Arrays"

• "Types of Distributions"

• "Propagation of Distribution"

• "Explicit Data Movement with ppback and ppfront"

• "Loading And Saving Data on the Parallel Server"

The Star-P® extensions to MATLAB allow you to parallelize computations by declaring data
as distributed. This places the data in the memory of multiple processors. Once the data is
distributed, then operations on the distributed data will run implicitly in parallel. Since
declaring the data as distributed requires very little code in a Star-P® program, performing the
MATLAB operations in parallel requires very little change from standard, serial MATLAB
programing.

Another key concept in Star-P® is that array dimensions are declared as distributed, not the
array proper. Of course, creating an array with array dimensions that are distributed causes
the array itself to be distributed as well. This allows the distribution of an array to propagate
through not only computational operators like + or fft, but also data operators like size.
Propagation of distribution is one of the key concepts that allows large amounts of MATLAB
code to be reused directly in Star-P® without change.
Release 2.7 Star-P® Programming Guide for Use with MATLAB® 21

Star-P® Naming Conventions
Star-P® Naming Conventions

Star-P® commands and data types generally use the following conventions, to distinguish
them from standard MATLAB commands and data types:

• Most Star-P® commands begin with the letters pp, to indicate parallel. For example,
the Star-P® ppload command loads a distributed matrix from local files. Exceptions
to this rule include the split and bcast commands.

• Star-P® data types begin with the letter d, to indicate “distributed”. For example, the
Star-P® dsparse class implements distributed sparse matrices.

The following convention for displaying Star-P® related commands and classes is used
throughout this chapter.

Examining Star-P® Data

This section describes how you can look at your variables, see their sizes and determine
whether they reside on the client as a regular MATLAB object or on the server as a Star-P®
object. The MATLAB whos command is often used for this function, but whos is unaware of
the true sizes of the distributed arrays. Star-P® supports a similar command called ppwhos.
Here is sample calling sequence and output:

>> n = 1000;
>> app = ones(n*p);
>> bpp = ones(n*p,n);
>> ppwhos
Your variables are:
 Name Size Bytes Class
 app 1000x1000p 8000000 ddense array
 bpp 1000px1000 8000000 ddense array
 n 1x1 8 double array
Grand total is 2000001 elements using 16000008 bytes
MATLAB has a total of 1 elements using 8 bytes

Star-P® server has a total of 2000000 elements using 16000000 bytes

Command/Variable Font

p & other dlayout variables bold green font
Distributed variables bold blue font

Star-P® functions bold black font
22 Star-P® Programming Guide for Use with MATLAB® Release 2.7

Examining Star-P® Data

Note that each dimension of the arrays includes the “p” if it is distributed. Size and Bytes
reflect the size on the server for distributed objects, and transition naturally to scientific
notation when their integer representations get too large for the space.

>> n = 2*10^9;
>> xpp = ones(1,n*p);
>> ppwhos
Your variables are:
 Name Size Bytes Class
 n 1x1 8 double array
 xpp 1x2000000000p 1.600000e+10 ddense array
Grand total is 2000000001 elements using 1.600000e+10 bytes
MATLAB has a total of 1 elements using 8 bytes

Star-P® server has a total of 2000000000 elements using 1.600000e+10 bytes

Note that the MATLAB whos command, when displaying distributed objects, only shows the
amount of memory they consume on the front-end, not including their server memory. This
does not reflect their true extent. For example, the output from whos for the session above
looks like the following:

>> n = 1000;
>> app = ones(n*p);
>> bpp = ones(n*p,n);
>> whos
 Name Size Bytes Class
 app 1000x1000 1728 ddense
 bpp 1000x1000 1728 ddense
 n 1x1 8 double

The ppwhos command gives the full and correct information.

Reusing Existing Scripts

The following routine is the built-in MATLAB routine to construct a Hilbert matrix:

>> H = hilb(4096);

Because the operators in the routine (:, ones, subsasgn, transpose, rdivide, +, -) are
overloaded to work with distributed matrices and arrays, typing the following would create a
4096 by 4096 Hilbert matrix on the server.

>> Hpp = hilb(4096*p)
Hpp =
 ddense object: 4096-by-4096p

By exploiting MATLAB’s object-oriented features in this way, existing scripts can run in
parallel under Star-P® with minimal modification.
Release 2.7 Star-P® Programming Guide for Use with MATLAB® 23

Special Variables: p and np
Examining/Changing Distributed Matrices

As a general rule, you will probably not want to view an entire distributed array, because the
arrays that are worth distributing tend to be huge. For example, the text description of 10
million floating-point numbers is vast. But looking at a portion of an array can be useful. To
look at any portion of a distributed array bigger than a scalar, it will have to be transferred
explicitly to the client MATLAB program. But looking at a single element of the array can be
done simply. Remember from above that result arrays that are 1x1 matrices are created as
local arrays on the MATLAB client.

>> app = rand(1000*p,1000);
>> size(app)
ans =
 1000p 1000
>> app(423,918)
ans =
 0.2972
>> app(2,3), app(2,3) = 5; app(2,3)
ans =
 0.8410
ans =
 5
>> app(1:5,1:5)
ans =
 ddense object: 5p-by-5

As you can see, examining a single element of the array returns its value. Examining multiple
elements creates another distributed object, which remains on the server, as in the last
command above. To see the values of these elements, you will need to use ppfront to
move them to the front-end. For information on ppfront and ppback see "Explicit Data
Movement with ppback and ppfront".

>> app = rand(1000*p,1000);
>> ppfront(app(1:5,1:5))
ans =
 0.9256 0.3075 0.4824 0.7822 0.6045
 0.6478 0.7912 0.8058 0.8359 0.0778
 0.4349 0.7521 0.0216 0.5591 0.2883
 0.9269 0.9317 0.9427 0.1967 0.3970
 0.2723 0.2860 0.3665 0.1203 0.3310

Special Variables: p and np

In Star-P® you use two special variables to control parallel programming. While they are
technically functions, you can think of them as special variables. The first is p, which is used
in declarations such as the following to denote that an array should be distributed for parallel
processing.

>> zpp = ones(100*p);
24 Star-P® Programming Guide for Use with MATLAB® Release 2.7

Special Variables: p and np
The second variable with special behavior is np, denoting the number of processors that
have been allocated to the user’s job for the current Star-P® session. Because these are not
unique names, and existing MATLAB programs may use these names, care has been taken
to allow existing programs to run, as described here. The behavior described here for p and
np is the same as the behavior for MATLAB built-in variables such as i and eps, which
represent the imaginary unit and floating-point relative accuracy, respectively.

The variables p and np exist when Star-P® is initiated, but they are not visible by the whos or
ppwhos command.

After Star-P® initializes in a new session, the following commands yield no output.

>> whos
>> ppwhos

Even though the variables p and np do not appear in the output of whos or ppwhos, they do
have values:

>> p
ans =
 1p
>> np
ans =
 8

The variable np will contain the number of processors in use in the current Star-P® session.
In this example, the session was using eight processors.

Because these variable names may be used in existing programs, it is possible to replace the
default Star-P® definitions of p and np with your own definitions, as in the following example:

>> p
ans =
 1p
>> np
ans =
 8
>> n = 100;
>> app = ones(n*p);
>> bpp = ones(n*p,n);
>> cpp = bpp*bpp;
>> p = 3.14;
>> z = p*p;
>> z
z =
 9.8596
>> p
p =
 3.1400
>> ppwhos
Release 2.7 Star-P® Programming Guide for Use with MATLAB® 25

Special Variables: p and np
Your variables are:
 Name Size Bytes Class
 app 100x100p 80000 ddense array
 ans 1x1 8 double array
 bpp 100px100 80000 ddense array
 cpp 100px100 80000 ddense array
 n 1x1 8 double array
 p 1x1 8 double array
 z 1x1 8 double array
Grand total is 30004 elements using 240032 bytes
MATLAB has a total of 4 elements using 32 bytes

Star-P® server has a total of 30000 elements using 240000 bytes
>> clear p
>> p
ans =
 1p
>> ppwhos
Your variables are:
 Name Size Bytes Class
 app 100x100p 80000 ddense array
 ans 1x1 258 dlayout array
 bpp 100px100 80000 ddense array
 cpp 100px100 80000 ddense array
 n 1x1 8 double array
 z 1x1 8 double array
Grand total is 30003 elements using 240274 bytes
MATLAB has a total of 3 elements using 274 bytes

Star-P® server has a total of 30000 elements using 240000 bytes

Note that in the first output from ppwhos, the variable p is displayed, because it has been
defined by the user, and it works as a normal variable. But once it is cleared, it reverts to the
default Star-P® definition. If you define p in a function, returning from the function acts like a
clear and the definition of p will revert in the same way.

The variable name np works in the same way.

Assignments to p

The variable pp is a synonym for p. If you use a mechanism to control client versus Star-P®
operation (execution solely on the client versus execution with Star-P®), the assignment of p
= 1 anywhere in the MATLAB script will alter the p function. In this case, use a construct
similar to the following:

if StarP
 p = pp;
else
 p = 1;
end

Anytime you clear the variable p, for example clear p, the symbolic nature of p is restored.
26 Star-P® Programming Guide for Use with MATLAB® Release 2.7

Supported Data Types
Supported Data Types

Real and Complex Data

Real and complex numbers in Star-P® are supported as in MATLAB. Matrices of double
precision real and complex data can be directly created and manipulated by use of the
complex, real, imag, conj, and isreal operators and the special variables i and j
(equal to the square root of -1, or the imaginary unit), and they can be the output of certain
operators.

Note: Complex integer types are not supported within the Star-P® Task Parallel Engine
(TPE). However, it does support floating point complex types such as double.

>> n = 1000;
>> app = rand(n*p,n)
app =
 ddense object: 1000p-by-1000
>> bpp = rand(n*p,n)
bpp =
 ddense object: 1000p-by-1000
>> cpp = app + i*bpp
cpp =
 ddense object: 1000p-by-1000
>> ccpp = conj(cpp)
ccpp =
 ddense object: 1000p-by-1000
>> dpp = real(cpp)
dpp =
 ddense object: 1000p-by-1000
>> epp = imag(cpp)
epp =
 ddense object: 1000p-by-1000
>> fpp = complex(app)
fpp =
 ddense object: 1000p-by-1000
>> ppwhos
Your variables are:
 Name Size Bytes Class
 app 1000px1000 8000000 ddense array
 bpp 1000px1000 8000000 ddense array
 cpp 1000px1000 16000000 ddense array (complex)
 ccpp 1000px1000 16000000 ddense array (complex)
 dpp 1000px1000 8000000 ddense array
 epp 1000px1000 8000000 ddense array
 fpp 1000px1000 16000000 ddense array (complex)
 n 1x1 8 double array
Grand total is 7000001 elements using 80000008 bytes
MATLAB has a total of 1 elements using 8 bytes

Star-P® server has a total of 7000000 elements using 80000000 bytes
Release 2.7 Star-P® Programming Guide for Use with MATLAB® 27

Creating Distributed Arrays
Besides these direct means of constructing complex numbers, they are often the result of
specific operators, perhaps the most common example being FFTs.

>> app = rand(1000,1000*p)
app =
 ddense object: 1000-by-1000p
>> bpp = fft2(app)
bpp =
 ddense object: 1000-by-1000p
>> ppwhos
Your variables are:
 Name Size Bytes Class
 app 1000x1000p 8000000 ddense array
 bpp 1000x1000p 16000000 ddense array (complex)
Grand total is 2000000 elements using 24000000 bytes
MATLAB has a total of 0 elements using 0 bytes

Star-P® server has a total of 2000000 elements using 24000000 bytes

Creating Distributed Arrays

Using Star-P®, data can be created as distributed in several ways:

• The data can be initially allocated as distributed using the *p syntax in conjunction
with a variety of constructor routines such as zeros, ones, rand, randn, spones,
sprand, sprandn, as described in "Distributed Data Creation Routines".

• An array bounds variable can be created using the *p syntax, which is then used to
create distributed arrays.

• Most commonly, a distributed object can be created by propagation when an
operation on a distributed object creates a new distributed object, as described in
"Propagating the Distributed Attribute".

• The data can be loaded from disk to a distributed object with the ppload routine,
which is similar to the MATLAB load routine.

• The data can be explicitly distributed with the ppback server command.

• A new distributed array can be created by indexing a section of a distributed array,
as described in "Indexing into Distributed Matrices or Arrays".

The *p Syntax

The symbol p means “distributed” and can add that attribute to a variety of other operators
and variables by the multiplication operator *. Technically, p is a function, but it may be
simpler to think of it as a special variable. Any scalar that is multiplied by p will be of class
dlayout. For more information about p, see "Special Variables: p and np".

>> p
ans =
28 Star-P® Programming Guide for Use with MATLAB® Release 2.7

Creating Distributed Arrays
 1p
>> whos
 Name Size Bytes Class Attributes
 ans 1x1 362 dlayout

Note: While it might seem natural to add a *p to the bounds of a for loop to have it run in
parallel, unfortunately that doesn't work. The simplicity of this type of approach has
not been lost on the designers of Star-P®, and a functionality of this type or similar
may appear in future releases.

Distributed Data Creation Routines

Matrices can be declared as distributed in Star-P® by appending *p to one or more of the
dimensions of the matrix. For example, any of the following will create App as a distributed
dense matrices:

>> App = rand(100*p,100);
>> App = rand(100 ,100*p);
>> App = rand(100*p);
>> App = rand(100*p,100*p);
>> App = 1:100*p;

The first and second examples create matrices that are distributed in the first and second
dimensions, respectively. The last two examples create a matrix that is distributed in the
second dimension. For more detail, see "Types of Distributions".

Similarly, distributed sparse matrices can be created by the following declaration:

App = sprandn(100*p,100,0.03);

You can declare multidimensional arrays to be distributed by appending *p to any one
dimension of the matrix. Star-P® supports the same set of data creation operators for
multidimensional arrays as MATLAB does.

The operators ones, zeros, rand, sprand, eye, and speye all have the same behavior as
randn and sprandn, respectively, for dense and sparse operators. The horzcat and
vertcat operators work in the obvious way; concatenation of distributed objects yields
distributed objects.

The meshgrid operator can create distributed data in a similar way, although this example
may not be the way you would use it in practice:

>> [xpp ypp] = meshgrid(-2:.2:2*p,-2:.2:2*p);
>> size(xpp), size(ypp)
ans =
 21 21p
ans =
 21 21p
Release 2.7 Star-P® Programming Guide for Use with MATLAB® 29

Creating Distributed Arrays
Also, the diag operator extends a distributed object in the obvious way.

>> qpp = rand(100*p,1);
>> rpp = diag(qpp,0);
>> size(qpp), size(rpp)
ans =
 100p 1
ans =
 100p 100

The reshape command can also create distributed arrays, even from local arrays.

>> a = rand(100,100);
>> app = reshape(a,100,100*p)
app =
 ddense object: 100-by-100p
>> ppwhos
Your variables are:
 Name Size Bytes Class
 a 100x100 80000 double array
 app 100x100p 80000 ddense array
Grand total is 20000 elements using 160000 bytes
MATLAB has a total of 10000 elements using 80000 bytes

Star-P® server has a total of 10000 elements using 80000 bytes

The details of these different distributions are described in "Types of Distributions".

Note: The data sizes shown in the examples illustrate the functionality of Star-P® but do not
necessarily reflect the sizes of problems for which Star-P® will provide significant
benefit.

Distributed Array Bounds

Some programs or functions take as input not an array, but the bounds of arrays that are
created internally. The *p syntax can be used in this situation as well, as shown in the
following:.

>> n = 1000*p;
>> whos
 Name Size Bytes Class Attributes
 n 1x1 362 dlayout
>> App = rand(n)
App =
 ddense object: 1000-by-1000p

Indexing into Distributed Matrices or Arrays

Indexing allows creation of new matrices or arrays from subsections of existing matrices or
arrays. Indexing on distributed matrices or arrays always creates a distributed object, unless
30 Star-P® Programming Guide for Use with MATLAB® Release 2.7

Creating Distributed Arrays
the result is a scalar, in which case it is created as a local object. Consider the following
example:

>> app = rand(1000*p);
>> bpp = rand(1000*p);

Operations that result in distributed matrices:

% Indexing (sub)sections of the elements of a distributed
% array result in a distributed object
>> cpp = app(1:end,1:end);
>> dpp = app(18:23,47:813);
>> fpp = app(:); %linearize 2D array into 1D vector doing assignment
 %via the linearization approach works naturally
>> bpp(:) = 0;

Operations that result in local objects, data transferred to front-end:

>> e = app(47,418); % scalar goes to front-end
>> nnz(app) % scalar answer 'ans' goes to front-end
ans =
 1000000
>> nnz(bpp) % scalar answer 'ans' goes to front-end
ans =
 0
>> ppwhos
Your variables are:
 Name Size Bytes Class
 app 1000x1000p 8000000 ddense array
 ans 1x1 8 double array
 bpp 1000x1000p 8000000 ddense array
 cpp 1000x1000p 8000000 ddense array
 dpp 6x767p 36816 ddense array
 e 1x1 8 double array
 fpp 1000000px1 8000000 ddense array
Grand total is 4004604 elements using 32036832 bytes
MATLAB has a total of 2 elements using 16 bytes

Star-P® server has a total of 4004602 elements using 32036816 bytes

In order to propagate the distribution of data as broadly as possible, Star-P® interprets
indexing operations on distributed objects as creating new distributed objects, hence the
distributed nature of bpp and dpp in the example. The one exception is where the resulting
object is a scalar (1x1 matrix), which always resides on the front-end.

Note that creating a new matrix or array by indexing, as in the creation of dpp above, may
involve interprocessor communication on the server, as the new matrix or array will need to
be evenly distributed across the processors (memories) in use, and the original position of
the data may not be evenly distributed.
Release 2.7 Star-P® Programming Guide for Use with MATLAB® 31

Types of Distributions

It may seem logical that you could create a distributed object by adding the *p to the left-hand
side of an equation, just as you can to the right-hand side. But this approach doesn't work,
either in MATLAB in general or in Star-P® specifically for distributed arrays.

>> a*4 = rand(100,100);
??? a*4 = rand(100,100);
Error: The expression to the left of the equals sign is not a valid target for
an assignment.
>> a*p = rand(100,100);
??? a*p = rand(100,100);
Error: The expression to the left of the equals sign is not a valid target for
an assignment.
>> a(:,:) = rand(100,100);
>> a(:,:*p) = rand(100,100);
??? a(:,:*p) = rand(100,100);
Error: Unexpected MATLAB operator.

Note: There is an incompatibility between MATLAB and Star-P® in this area. In MATLAB,
when you type the command app or bpp, as soon as that assignment is complete, you
can modify either app or bpp and know that they are distinct entities, even though the
data may not be copied until later. For technical reasons Star-P® can get fooled by this
deferment. Thus if you modify either app or bpp, the contents of both app and bpp get
modified. Because of the semantics of the MATLAB language, this is only relevant for
assignments of portions of app or bpp; i.e., app(18,:) = ones(1,100*p) or
app(1234) = 3.14159. There are several ways to avoid the deferment and force
the data to be copied immediately to avoid this problem. One example would be (for
a 2D matrix) to do the copy with app = bpp(:,:). Another example that works for
all non-logical arrays is app = +bpp.

Note: Related to the previous note, if a shallow copy of a variable is created using the
command app = bpp, then the deletion of either app or bpp using clear or ppclear
on app or bpp will delete the data for both app and bpp but will not delete the symbols
for both variables. To avoid the this scenario, use an assignment statement of the form
app = bpp(:,:) or app = +bpp.

Types of Distributions

Distributed Dense Matrices and Arrays

Star-P® uses the MATLAB terminology of two-dimensional matrices and multidimensional
arrays of numbers. Like MATLAB, a full set of operations is defined for matrices, but a smaller
set for arrays. Arrays are often used as repositories for multiple matrices and operated on in
2D slices, so the set of supported operators reflects this.

Star-P® supports row and column distribution of dense matrices. These distributions assign a
block of contiguous rows/columns of a matrix to successive processes.
32 Star-P® Programming Guide for Use with MATLAB® Release 2.7

Types of Distributions
A two-dimensional distributed dense matrix can be created with any of the following
commands:

>> bpp = rand(400 ,400*p);
>> app = rand(400*p,400);

 The *p designates which of the dimensions are to be distributed across multiple processors.

Row distribution

In the example above, app is created with groups of rows distributed across the memories of
the processors in the parallel server. Thus, with 400 rows on 8 processors, the first 400/8 ==
50 rows would be on the first processor, the next 50 on the second processor, and so forth, in
a style known as row-distributed. Figure 3-1 illustrates the layout of a row-distributed array.

Figure 3-1 Row Distribution

Column distribution

Column-distribution works just the same as row distribution, except column data is split over
available processors; bpp is created that way above. Figure 3-2: illustrates the layout of a
column distributed array. When a *p is placed in more than one dimension, the matrix or
multi-dimensional array will be distributed in the rightmost dimension containing a *p. For
example, if there was a *p in both dimensions of the constructor for a two dimensional matrix,
it would result in a column distribution.
Release 2.7 Star-P® Programming Guide for Use with MATLAB® 33

Types of Distributions
Figure 3-2 Column Distribution

Distributed Dense Multidimensional Arrays

Distributed multidimensional arrays are also supported in Star-P®. They are distributed on
only a single dimension, like row- and column-distributed 1D or 2D matrices. Hence if you
create a distributed object with the following command, then app will be distributed on the
third dimension:

>> n = 10;
>> app = rand(n,n,n*p,n);

If you should happen to request distribution on more than one dimension, the resulting array
will be distributed on the rightmost non-singleton requested dimension. A singleton is defined
as a matrix dimension with a size equal to 1.

>> app = zeros(10*p,10,10*p,10*p,10*p)
app =
 ddense object:10-by-10-by-10-by-10-by-10p

Multidimensional distributed dense arrays support a subset of operators on 2D arrays. See
the full list in "Star-P® Functions".

Distributed Sparse Matrices

Distributed sparse matrices in Star-P® use the compressed sparse row format. Distributed
sparse matrices are represented as dsparse objects. This format represents the nonzeros in
34 Star-P® Programming Guide for Use with MATLAB® Release 2.7

Types of Distributions
each row by the index (in the row) of the nonzero and the value of the nonzero, as well as
one per-row entry in the matrix data structure. This format consumes storage proportional to
the number of nonzeros and the number of rows in the matrix. Sparse matrices in Star-P®
typically consume 12 bytes per double-precision element, compared to 8 bytes for a dense
matrix. The matrix is distributed by rows, with the same number of rows per processor
(modulo an incomplete number on the last processor(s)). Note that, as a consequence, it is
possible to create sparse matrices that do not take advantage of the parallel nature of the
server. For instance, if a series of operations creates a distributed sparse row vector, all of
that vector will reside on one processor and would typically be operated on by just that one
processor.

How Star-P® Represents Sparse Matrices

While one might imagine the data stored in three columns headed by i, j, Aij, in fact the data is
stored as described by this picture:

Figure 3-3 Star-P® Sparse Data Structure

Notice that if you subtract the row index vector from itself shifted one position to the left, you
get the number of elements in a row. This makes it clear what to do if element (2,2) with the
value of 59 gets deleted in Figure 3-3:, resulting in no elements left in the second row. The
indices would then point to [1 3 3 5]. In other words, noticing that the number of non-zeros per
row is [2 0 2] in this case, you could perform a cumsum on [1 2 0 2] and obtain [1 3 3 5].
Release 2.7 Star-P® Programming Guide for Use with MATLAB® 35

Types of Distributions
Figure 3-4 Star-P® Distributed Sparse Data Structures

Figure 3-4 shows what happens when the sparse data structure from Figure 3-3: is
distributed across multiple processors by Star-P®. The number of rows is divided among the
participating processors, and each processor gets the information about its local rows. Thus
operations that occur on rows can happen locally on a processor; operations that occur on
columns require communication among the processors.

Distributed Cell Objects (dcell)

The dcell is analogous to MATLAB cells. The dcell type is different from the other
distributed matrix or array types, as it may not have the same number of data elements per
dcell iteration and hence doesn't have the same degree of regularity as the other
distributions. This enables dcells to be used as return arguments for ppevalsplit(). For
more information on ppevalsplit, see "ppevalsplit" in "Star-P® Functions".

Combining Data Distribution Mechanisms

The data distribution mechanisms can be combined in a program. For instance, the array App
can be loaded from a file and then its dimensions used to create internal work arrays based
on the size of the passed array.

>> ppload imagedata App
>> [rows cols] = size(App)
rows =
 1000
cols =
 1000p
>> Bpp = zeros(rows,cols);
>> ppwhos
Your variables are:
 Name Size Bytes Class
 App 1000x1000p 8000000 ddense array
 Bpp 1000x1000p 8000000 ddense array
 cols 1x1 258 dlayout array
36 Star-P® Programming Guide for Use with MATLAB® Release 2.7

Types of Distributions
 rows 1x1 8 double array
Grand total is 2000002 elements using 16000266 bytes
MATLAB has a total of 2 elements using 266 bytes

Star-P® server has a total of 2000000 elements using 16000000 bytes

Similarly, input data created by ones or zeros or sprand can be used as input to other
functions, scripts, or toolboxes that are not aware of the distributed nature of their input, but
will work anyway. For example, the function foo is defined as follows:

function c = foo(a) % now executing in the function foo
[rows cols] = size(a);
b = rand(rows,cols); % creat a symmetric + diagonal matrix
c = b + b' + eye(rows); % based on the size of the input
%

In this example, the following code will then work because all the operators in foo are
defined for distributed objects as well as regular MATLAB objects:

>> App = rand(1000*p);
>> Cpp = foo(App)
Cpp =
 ddense object: 1000-by-1000p
>> ppwhos
Your variables are:
 Name Size Bytes Class
 App 1000x1000p 8000000 ddense array
 Cpp 1000x1000p 8000000 ddense array
Grand total is 2000000 elements using 16000000 bytes
MATLAB has a total of 0 elements using 0 bytes

Star-P® server has a total of 2000000 elements using 16000000 bytes

These mechanisms are designed to work this way so that a few changes can be made when
data is input to the program or initially created, and then the rest of the code can be
untouched, giving high re-use and easy portability from standard MATLAB to Star-P®
execution.

Mixing Local and Distributed Data

The examples up until now have covered operations that included exclusively local or
distributed data. Of course, it is possible to have operations that include both. In this case,
Star-P® typically moves the local object from the client to the server, following the philosophy
that operations on distributed objects should create distributed objects. In the example here,
you can see this by the pptoc output showing 80KB received by the server.

>> A = rand(100);
>> Bpp = rand(100*p);
>> pptic; Cpp = A + Bpp; pptoc;
Client/server communication report:
 Sent by server: 2 messages, 1.560e+02 bytes
 Received by server: 2 messages, 8.017e+04 bytes
Release 2.7 Star-P® Programming Guide for Use with MATLAB® 37

Types of Distributions
 Total communication time: 6.706e-03 seconds
Server processing report:
 Duration of calculation on server (wall clock time): 7.675e-03s
 #ppchangedist calls: 0
--
Total time: 1.648e-01 seconds

And of course, note that all scalars are local, so whenever a scalar is involved in a calculation
with a distributed object, it will be sent to the server.

>> Bpp = rand(100*p)
Bpp =
 ddense object: 100-by-100p
>> App = Bpp * pi
App =
 ddense object: 100-by-100p

The mixing of local and distributed data arrays is not as common as you might think.
Remember that Star-P® is intended for solving large problems, so distributed arrays will
typically be bigger than the memory of the client system. So, a typically sized distributed
array would not have an equal size client array to add to it.

There are cases where mixed calculations can be useful. For example, if a vector and a
matrix are being multiplied together, the vector may be naturally stored on the client, but a
calculation involving a distributed array will move it to the server.

>> qpp = rand(10000*p,16);
>> r = rand(16,1);
>> spp = qpp*r
spp =
 ddense object: 10000p-by-1

Distributed Classes used by Star-P®

You may have been wondering about these class types you have been seeing in the output of
ppwhos, namely dlayout, ddense, dsparse, and densend. Classes are the way that
MATLAB supports extensions of its baseline functionality, similar to the way C++ and other
languages support classes. To create a new class, it must have a name and a set of functions
that implement it.

The ddense class may be the simplest Star-P® class to understand. It is a dense matrix, just
like a MATLAB dense matrix, except it is distributed across the processors (memories) of the
HPC server system. When you create a distributed dense object, you will see its type listed
by ppwhos, as in the following example:

>> n = 1000;
>> App = ones(n*p);
>> Bpp = ones(n*p,n);
>> ppwhos
38 Star-P® Programming Guide for Use with MATLAB® Release 2.7

Types of Distributions
Your variables are:
 Name Size Bytes Class
 App 1000x1000p 8000000 ddense array
 Bpp 1000px1000 8000000 ddense array
 n 1x1 8 double array
Grand total is 2000001 elements using 16000008 bytes
MATLAB has a total of 1 elements using 8 bytes

Star-P® server has a total of 2000000 elements using 16000000 bytes

Creating a new class is simple. Having it do something useful requires operators that know
how to operate on the class. MATLAB allows class-specific operators to be in a directory
named @ddense, in the case of class ddense. For instance, if you wanted to know where the
routine is that implements the gradient operator, you would use the MATLAB which
command, as in the following example:

>> which gradient
/usr/local/matlab/toolbox/matlab/datafun/gradient.m
>> which @ddense/gradient
<starp_root>/matlab/@ddense/gradient.p % ddense method
>> which @ddensend/gradient
<starp_root>/matlab/@ddensend/gradient.p % ddensend method
>> which @dsparse/gradient
<starp_root>/matlab/@dsparse/gradient.p % dsparse method

In the above example, <starp_root> is the location where the Star-P® client installation took
place.

The which sum command tells you where the routine is that implements the sum operator for
a generic MATLAB object. The which @double/sum command tells you where the
MATLAB code is that implements the sum operator for the MATLAB double type. The which
@ddense/sum command tells you where the Star-P® code is that implements it for the
Star-P® ddense class. The MATLAB class support is essential to the creation of Star-P®’s
added classes.

Similarly to the ddense class, the dsparse class implements distributed sparse matrices.
Since the layout and format of data is different between dense and sparse matrices, typically
each will have its own code implementing primitive operators. The same holds for the
ddensend class implementing multidimensional arrays.

 However, as shown in the hilb example below, there are non-primitive MATLAB routines
which use the underlying primitives that are implemented for ddense and dsparse. These
routines will work in the obvious way, and so no further class-specific version of the routine is
necessary.

>> which hilb
/usr/local/matlab/toolbox/matlab/elmat/hilb.m
>> which @ddense/hilb
'@ddense/hilb' not found.
>> which @ddensend/hilb
'@ddensend/hilb' not found.
Release 2.7 Star-P® Programming Guide for Use with MATLAB® 39

Types of Distributions
The dlayout class is not as simple as the ddense and dsparse classes, because the only
function of the dlayout class is to declare dimensions of objects to be distributed. Thus, you
will see that operators are defined for dlayout only where it involves array construction (e.g.
ones, rand, speye) and simple operators often used in calculations on array bounds (for
example, max, floor, log2, abs). The complete set of functions supported by dlayout are
found in "Supported MATLAB® Functions". The only way to create an object of class
dlayout is to append a *p to an array bound at some point, or to create a distributed object
otherwise, as via ppload.

To create dlayout objects without the *p construct we can import data with ppload and
extract the dlayout objects from size of the imported variable.

>> n = 1000;
>> app = rand(n*p)
app =
 ddense object: 1000-by-1000p
>> [rows, cols] = size(app)
rows =
 1000
cols =
 1000p
>> ppload imagedata App
>> Bpp = inv(App)
Bpp =
 ddense object: 1000-by-1000p
>> [Brows, Bcols] = size(Bpp)
Brows =
 1000
Bcols =
 1000p
>> ppwhos
Your variables are:
 Name Size Bytes Class
 App 1000x1000p 8000000 ddense array
 Bpp 1000x1000p 8000000 ddense array
 Bcols 1x1 258 dlayout array
 Brows 1x1 8 double array
 app 1000x1000p 8000000 ddense array
 cols 1x1 258 dlayout array
 n 1x1 8 double array
 rows 1x1 8 double array
Grand total is 3000005 elements using 24000540 bytes
MATLAB has a total of 5 elements using 540 bytes

Star-P® server has a total of 3000000 elements using 24000000 bytes

As a result, dlayout is something you may see often in ppwhos displays.
40 Star-P® Programming Guide for Use with MATLAB® Release 2.7

Types of Distributions
Propagating the Distributed Attribute

Since the distributed attribute of matrices and arrays is what triggers parallel execution, the
semantics of Star-P® have been carefully designed to propagate distribution as frequently as
possible. In general, operators which create data objects as large as their input (*, +, \ (linear
solve), fft, svd, etc.) will create distributed objects if their input is distributed. Operators
which reduce the dimensionality of their input, such as max or sum, will create distributed
objects if the resulting object is larger than a scalar (1x1 matrix). Routines that return a fixed
number of values, independent of the size of the input (like eigs, svds, and histc) will
return local MATLAB (non-distributed) objects even if the input is distributed. Operators
whose returns are bigger than the size of the input (e.g. kron) will return distributed objects if
any of their inputs are distributed. Note that indexing, whether for a reference or an
assignment, is just another operator, and follows the same rules.

The following example creates a distributed object through the propagation of a distributed
object. In this case, since App is created as a distributed object through the *p syntax, Bpp will
be created as distributed.

>> App = ones(100*p);
>> Bpp = 2 * App;
>> ppwhos
Your variables are:
 Name Size Bytes Class
 App 100x100p 80000 ddense array
 Bpp 100x100p 80000 ddense array
Grand total is 20000 elements using 160000 bytes
MATLAB has a total of 0 elements using 0 bytes

Star-P® server has a total of 20000 elements using 160000 bytes

Note that in this example, both ones and “*” are overloaded operations and will perform the
same function whether the objects they operate on are local or distributed.

The following computes the eigenvalues of Xpp, and stores the result in a matrix Epp, which
resides on the server.

>> Xpp = rand(1000*p);
>> Epp = eig(Xpp);

The result is not returned to the client, unless explicitly requested, in order to reduce data
traffic.

Operators which reduce the dimensionality of their input naturally transition between
distributed and local arrays, in many cases allowing an existing MATLAB script to be reused
with Star-P® having little or no change. Putting together all of these concepts in a single
example, you can see how distribution propagates depending on the size of the output of an
operator. (Note that the example omits trailing semicolons for operators that create
distributed objects so their size will be apparent.)

Assume that the script propagate.m consists of the following commands:
Release 2.7 Star-P® Programming Guide for Use with MATLAB® 41

Types of Distributions
>> type propagate
[rows, cols] = size(a)
b = rand(rows,cols)
c = b+a
d = b*a
e = b.*a
f = max(e)
ff = max(max(e))
gg = sum(sum(e))
size(ff), size(gg)
h = fft(e)
i = ifft(h)
[i j v] = find(b > 0.95)
q = sparse(i, j, v, rows, cols)
r = q' + speye(rows);
s = svd(d);
t = svds(d,4);
ee = eig(d);

In that case, distribution will propagate through its operations as follows (note that we are
omitting the use of a suffix pp variable notation here, since the script is being reused without
modification):

>> a = ones(1000*p,1000)
a =
 ddense object: 1000p-by-1000
% now executing the commands in script 'propagate'
>> [rows, cols] = size(a)
rows =
 1000p
cols =
 1000
>> b = rand(rows,cols)
b =
 ddense object: 1000p-by-1000
>> c = b+a
c =
 ddense object: 1000p-by-1000
>> d = b*a
d =
 ddense object: 1000p-by-1000
>> e = b.*a
e =
 ddense object: 1000p-by-1000
>> f = max(e)
f =
 ddense object: 1-by-1000p
>> ff = max(max(e))
ff =
 1.0000
>> gg = sum(sum(e))
gg =
42 Star-P® Programming Guide for Use with MATLAB® Release 2.7

Types of Distributions
 4.9991e+05
>> size(ff), size(gg)
ans =
 1 1
ans =
 1 1
>> h = fft(e)
h =
 ddense object: 1000p-by-1000
>> i = ifft(h)
i =
 ddense object: 1000p-by-1000
>> [i j k] = find(b > 0.95)
i =
 ddense object: 49977p-by-1
j =
 ddense object: 49977p-by-1
k =
 ddense object: 49977p-by-1
>> q = sparse(i, j, k, rows, cols)
q =
 dsparse object: 1000p-by-1000
>> r = q' + speye(rows);
>> s = svd(d);
>> t = svds(d,4);
>> ee = eig(d);
% end of 'propagate' script, back to main session
>> ppwhos
Your variables are:
 Name Size Bytes Class
 a 1000px1000 8000000 ddense array
 ans 1x2 16 double array
 b 1000px1000 8000000 ddense array
 c 1000px1000 8000000 ddense array
 cols 1x1 8 double array
 d 1000px1000 8000000 ddense array
 e 1000px1000 8000000 ddense array
 ee 1000px1 16000 ddense array (complex)
 f 1x1000p 8000 ddense array
 ff 1x1 8 double array
 gg 1x1 8 double array
 i 49977px1 399816 ddense array
 j 49977px1 399816 ddense array
 k 49977px1 399816 ddense array
 q 1000px1000 807696 dsparse array (sparse)
 r 1000px1000 822688 dsparse array (sparse)
 rows 1x1 258 dlayout array
 s 1000px1 8000 ddense array
 t 4x1 32 double array

Grand total is 5253832 elements using 42862162 bytes
MATLAB has a total of 10 elements using 330 bytes
Release 2.7 Star-P® Programming Guide for Use with MATLAB® 43

Propagation of Distribution
Star-P® server has a total of 5253822 elements using 42861832 bytes

As long as the size of resulting arrays are dependent on the size of an input array and hence
will likely be used in further parallel computations, the output arrays are created as distributed
objects. When the output is small and likely to be used in local operations in the MATLAB
front-end, it is created as a local object. For this example, with two exceptions, all of the
outputs have been created as distributed objects. The exceptions are rows, which is a scalar
of class dlayout, and t, whose size is based on the size of a value passed to svds. Even in
cases where dimensionality is reduced, as with find, when the resulting object is large, it is
created as distributed.

Propagation of Distribution

A natural question often asked is, “What is the distribution of the output of a given function
expressed in terms of the inputs?” In Star-P®, there is a general principle on distribution that
has been carefully implemented in the case of indexing and for a large class of functions.
Perhaps like irregular verbs of a natural language, there are also a number of special cases,
that do not follow these rules, some of which we list here.

In Star-P®, the output of an operation does not depend on the distribution of its inputs. The
rules specifying the exact distribution of the output may vary in future releases of Star-P®.

Note: Performance and floating point accuracy may be affected, see "Accuracy of Star-P®
Routines" for more information.

Let’s first recall the distributions available for data in Star-P®:

The distributions of the output of operations follow the “calculus of distribution”. To calculate
the expected distribution of the output of a given function, express the size of the output in
terms of the size of the inputs. Note that matrices and multidimensional arrays are never
distributed along singleton dimensions (dimensions with a size of one), unless explicitly
created that way.

Functions of One Argument

In the simplest case, for functions of one argument where the size of the output is the size of
the input, the output distribution matches that of the input.

Type Distribution

ddense row, column

ddensend linear distribution along any dimension

dsparse row distribution only
44 Star-P® Programming Guide for Use with MATLAB® Release 2.7

Propagation of Distribution
Examples for Functions with One Argument

Operations with one input:

The cosine function operates on each element, and the output retains the same distribution
as the input:

>> App = rand(1000*p, 4)
App =
 ddense object: 1000p-by-4
>> Bpp = cos(App)
Bpp =
 ddense object: 1000p-by-4

A conjugate transpose exchanges the dimension sizes of its input, so it also exchanges the
dimensions' distribution attributes:

>> App = rand(1000*p, 4)
App =
 ddense object: 1000p-by-4
>> Bpp = App'
Bpp =
 ddense object: 4-by-1000p

Other example single argument functions:

App.^2, lu(App), fft(App), fft2(App) (ddense and ddensend where applicable)

Exceptions:

Certain Linear Algebra functions such as qr, svd, eig and schur benefit from a different
approach and do not follow this rule. See "Single ddense arguments" below.

Functions of Multiple Arguments

For functions with multiple input arguments, we again express the size of the output in terms
of the size of the inputs. When the calculation provides an ambiguous result, the output will
be distributed in the rightmost dimension that has a size greater than one.

For operations in which the output size is the same as both inputs, such as element-wise
operations (App+Bpp, App.*Bpp, App./Bpp, etc), we consider the distribution of both inputs.
If both inputs are row distributed, then the output will be row distributed. If the combination of
inputs has more than one distributed dimension, then the default of distributing on the
rightmost dimension applies.
Release 2.7 Star-P® Programming Guide for Use with MATLAB® 45

Propagation of Distribution
For example, with matrix multiplication,

Cpp = App * Bpp
size(Cpp) == [size(App,1) size(Bpp,2)] : rows_of_App -by- cols_of_Bpp

For Cpp=App*Bpp, if App and Bpp are both row distributed, the output will have its first
dimension distributed as a result of the fact that App has its first dimension distributed. Its
second dimension will not be distributed since Bpp's second dimension is not distributed.
Therefore Cpp will be row distributed as well.

For Cpp=App*Bpp, if App and Bpp are both column distributed, similar logic forces the output
to be column distributed.

For Cpp=App*Bpp, if App is row distributed and Bpp is column distributed, the calculus of
distribution indicates that both dimensions of the output should be distributed. Since this is
not permissible, the rightmost dimension is distributed, resulting in a column distribution.

For Cpp=App*Bpp, If App is column distributed and Bpp is row distributed, the calculus of
distribution indicates that neither dimension of the output should be distributed. Once again,
we fall back on the default of distributing the rightmost (column) dimension.

Examples for Functions with Multiple Arguments

As a less trivial example, consider Cpp = kron(App,Bpp). The size of the dimensions of
Cpp are calculated through the following formula:

size(Cpp) = size(App) * size(Bpp)

The resulting distribution would be ambiguous, so it defaults to the standard of distributing the
rightmost dimension:

>> App = rand(1000*p, 4);
>> Bpp = rand(10, 100*p);
>> Cpp = kron(App,Bpp)

Table 3-1Rules for Propagation of Distribution

operations Distribution
of App

Distribution
of Bpp

Output
Distribution

.^, lu, fft, fft2 row or column N/A matches input

+, .*, ./ row row row

column column column

row column column

column row column
46 Star-P® Programming Guide for Use with MATLAB® Release 2.7

Propagation of Distribution
Cpp =
 ddense object: 10000-by-400p

As another example, consider transpose:

Cpp = App.'
size(Cpp) = [size(App,2) size(App,1)]

For transpose, if App is row distributed, the output will be column distributed. If App is column
distributed, the output will be row distributed.

Exceptions for Multiple Arguments

The following operations benefit from special-case rules and must be accounted for one by
one. The following list is only the non-trivial cases.

Table 3-2 Single ddense arguments

1 output 2 outputs 3 outputs

qr(ddense) or
qr(ddense,0)

matches
input

matches
input

column

svd(ddense) or
svd(ddense,0) or
svd(ddense,’econ’)

row matches
input

matches
input

eig(ddense)
(no-sym)

row matches
input (not
officially
supported)

eig(ddense) (sym) row matches
input

Table 3-3 Distribution output of kron

Operation
Distribution
of App

Distribution
of Bpp

Output
Distribution

kron(App,Bpp) row row row

kron(App,Bpp) row column row

kron(App,Bpp) column column column

kron(App,Bpp) column row column
Release 2.7 Star-P® Programming Guide for Use with MATLAB® 47

Propagation of Distribution
Indexing Operations

Indexing operations follow the same style of rules as other operations. Since the output size
depends on the size of the indices (as opposed to the size of the array being indexed), the
output distribution will depend on the distribution of the arguments being used to index into
the array. If all objects being used to index into the array are front-end objects, then the result
will default to distribution along the rightmost dimension.

Some indexing examples:

For [r c] = size(Bpp); Bpp = reshape(App,r,c);, so we have:

>> App = rand(9, 4*p);
>> Bpp = reshape(App, 6, 6*p)
Bpp =
 ddense object: 6-by-6p
>> Cpp = reshape(Bpp, 36, 1)
Cpp =
 ddense object: 36p-by-1

Indexing is a particularly tricky example, because subsref has many different forms.
Bpp = App(:,:) has the same distribution as App, because size(Bpp) == size(App).
Bpp = App(:) vectorizes (linearizes) the elements of App, so the output will be row or column
distributed accordingly.

Other linear indexing forms inherit the output distribution from the indexing array:

>> App = rand(10*p,10)
App =
 ddense object: 10p-by-10
>> Ipp = ppback(magic(10))
Ipp =
 ddense object: 10-by-10p
>> Bpp = App(Ipp)
Bpp =
 ddense object: 10-by-10p

But, consider Bpp = App(Rpp,C) with the following:

>> App = rand(100*p,100);
>> Rpp = randperm(100*p)
Rpp =
 ddense object: 1-by-100p
>> C = randperm(100);
>> Bpp = App(Rpp,C)
Bpp =
 ddense object: 100p-by-100
48 Star-P® Programming Guide for Use with MATLAB® Release 2.7

Explicit Data Movement with ppback and ppfront
Here, size(Bpp) is defined as [prod([1 100p]) prod([1 100])] [100p 100]
which simplifies to [prod([10p 10p]) prod([10 10])] and then [100p 100]. So the
distribution of

• Bpp's row dimension is inherited from both of Rpp's dimensions, and

• Bpp's column dimension is inherited from C.

As a final example, consider logical indexing:

>> App = rand(100*p,100);
>> Ipp = App > 0.5
Ipp =
 ddense object: 100p-by-100
>> Bpp = App(Ipp)
Bpp =
 ddense object: 5042p-by-1

This might be unexpected, but is so because App(Ipp) is essentially the same as
App(find(Ipp)), and find(Ipp) returns a row-distributed column vector.

Summary for Propagation of Distribution

To summarize:

• Output distributions follow the “calculus of distribution” in which the rules for
determining the size of the output define the rules for the distribution of the output,
though a selection of Linear Algebra functions do not follow these rules.

• Typically, functions with one input and one output will have outputs that match the
distribution of the input.

• When the output distribution will be ambiguous or undefined by the standard rules,
the output will be distributed along its rightmost dimension.

• Outputs are never distributed along singleton dimensions (dimensions with a size of
one).

Explicit Data Movement with ppback and ppfront

In some instances a user wants to move data explicitly between the client and the server. The
ppback command and its inverse, ppfront, do these functions.

>> n = 1000;
>> mA = rand(n);
>> mB = rand(n);
>> ppwhos
Your variables are:
 Name Size Bytes Class
 mA 1000x1000 8000000 double array
Release 2.7 Star-P® Programming Guide for Use with MATLAB® 49

Explicit Data Movement with ppback and ppfront
 mB 1000x1000 8000000 double array
 n 1x1 8 double array
Grand total is 2000001 elements using 16000008 bytes
MATLAB has a total of 2000001 elements using 16000008 bytes

Star-P® server has a total of 0 elements using 0 bytes

>> App = ppback(mA)
App =
 ddense object: 1000-by-1000p
>> ppwhos
Your variables are:
 Name Size Bytes Class
 App 1000x1000p 8000000 ddense array
 mA 1000x1000 8000000 double array
 mB 1000x1000 8000000 double array
 n 1x1 8 double array
Grand total is 3000001 elements using 24000008 bytes
MATLAB has a total of 2000001 elements using 16000008 bytes

Star-P® server has a total of 1000000 elements using 8000000 bytes

ppfront is the inverse operation, and is in fact the only interface for moving data back to the
front end system. This conforms to the principle that once you, the programmer, have
declared data to be distributed, it should stay distributed unless you explicitly want it back on
the front end. Early experience showed that some implicit forms of moving data back to the
front end were subtle enough that users sometimes moved much more data than they
intended and introduced correctness (due to memory size) or performance problems.

Note that the memory size of the client system running MATLAB, compared to the parallel
server, will usually prevent full-scale distributed arrays from being transferred back to the
client.

>> App = rand(1700,1700*p)
App =
 ddense object: 1700-by-1700p
>> ppwhos
Your variables are:
 Name Size Bytes Class
 App 1700x1700p 23120000 ddense array
Grand total is 2890000 elements using 23120000 bytes
MATLAB has a total of 0 elements using 0 bytes

Star-P® server has a total of 2890000 elements using 23120000 bytes
>> b = ppfront(App);
>> ppwhos
Your variables are:
 Name Size Bytes Class
 App 1700x1700p 23120000 ddense array
 b 1700x1700 23120000 double array
Grand total is 5780000 elements using 46240000 bytes
MATLAB has a total of 2890000 elements using 23120000 bytes
50 Star-P® Programming Guide for Use with MATLAB® Release 2.7

Loading And Saving Data on the Parallel Server
Star-P® server has a total of 2890000 elements using 23120000 bytes

Note: <starp_root> is the path where Star-P® is located.

The ppback and ppfront commands will emit a warning message if the array already
resides on the destination (parallel server or client, respectively), so you will know if the
movement is superfluous or if the array is not where you think it is.

These two commands, as well as the ppchangedist command, will also emit a warning
message if the array being moved is bigger than a threshold data size (default size being
100MB). The messages can be disabled, or the threshold changed, by use of the
ppsetoption command, documented in "Star-P® Functions".

Loading And Saving Data on the Parallel Server

Just as the load command reads data from a file into MATLAB variable(s), the ppload
command reads data from a file into distributed Star-P® variable(s). Assume that you have
a file created from a prior MATLAB or Star-P® run, called imagedata.mat, with variables
App and Bpp in it. (MATLAB or Star-P® appends the .mat suffix.) You can then read that data
into a distributed object in Star-P® as follows:

>> ppload imagedata App Bpp
>> ppwhos
Your variables are:
 Name Size Bytes Class
 App 1000x1000p 8000000 ddense array
 Bpp 1000x1000p 8000000 ddense array
Grand total is 2000000 elements using 16000000 bytes
MATLAB has a total of 0 elements using 0 bytes

Star-P® server has a total of 2000000 elements using 16000000 bytes

While in some circumstances ppload can be replaced by a combination of load and
ppback, in general distributed arrays in Star-P® will be larger than the memory of the client
system running MATLAB, so it will be preferable to use ppload. For the same reason, users
will probably want to use ppsave of distributed arrays rather than ppfront/save.

Note that the file to be loaded from must be available in a filesystem visible from the HPC
server system, not just from the client system on which MATLAB itself is executing.
Consequently, if your .mat file is initially located on your client system, then copy the file into
a working directory on your server.

The ppload and ppsave Star-P® Commands

The distributed I/O commands ppload and ppsave store distributed matrices in the same
uncompressed Level 5 .mat-File Format used by MATLAB.
Release 2.7 Star-P® Programming Guide for Use with MATLAB® 51

Loading And Saving Data on the Parallel Server
Information about which dimension(s) of an array were distributed are not saved with the
array, so ddense matrices retrieved by ppload will, by default, be distributed on the last
dimension.

Note: The use of *p to make objects distributed and thereby make operators parallel can
almost always be made backwards compatible with MATLAB by setting p = 1. The
use of ppload does not have the same backward compatibility.

If you use ppsave to store distributed matrices into a file, you can later use load to retrieve
the objects into the MATLAB client. Distributed matrices (ddense and dsparse) will be
converted to local matrices (full and sparse), as if ppfront had been invoked on them. (The
exception to this operation is that some very large matrices break .mat-File compatibility; if
ppsave is applied to a distributed matrix with more than 232 rows or columns, or ppwhos
data requires more than 231 bytes of storage, then load may not be able to read the file.)

To move data from the front-end to the back-end via a file, the MATLAB save command must
use the -v6 format, as in save('foo','w','-v6') for saving variable w in file foo. Then
you can use ppload to read the resulting file to the server. This will convert local matrices to
global matrices, just as if ppback had been invoked, except that the resulting matrices will be
distributed only on the last dimension.

Star-P®’s ppload command cannot yet read the older Level 4 .mat-File, nor the
compressed Level 5 format. Use the -v6 flag in the MATLAB client to convert such files to
uncompressed Level 5 format.

The ppfopen Star-P® Command

Another method of loading of data is through the use of the ppfopen command. By calling
ppfopen with only a single string argument specifying a target file to open, the contents of
the file are opened in a read-only mode. The following command opens your_file and
returns a distributed file identifier of class @dfid.

fid = ppfopen('your_file');

Using a second input argument to ppfopen, further permissions for handling the contents of
the target file can be specified.

fid = ppfopen('your_file',MODE);

The input MODE can take values that allow for various permissions for viewing or altering the
file’s contents.

MODE Permission

'rb' read

'wb' write (create if necessary)

'ab' append (create if necessary)
52 Star-P® Programming Guide for Use with MATLAB® Release 2.7

Loading And Saving Data on the Parallel Server
Note: Only native machine format is supported and the ppfopen interface will return an error
if the caller tries to specify a different machine format or encoding parameter.

fopen, fread, fwrite, frewind, and fclose

The functions fopen, fread, fwrite, frewind, and fclose have been overloaded to
work with distributed data, including distributed file identifiers.

For example, the fread function can be used in the following manner to assign a 1000 by
1000 matrix to a variable that has previously been associated with the distributed file
identifier fid:

App = fread(fid,[1000 1000*p]);

You will notice that fread allows you to specify the distribution properties of the data assigned
to the distributed variable App.

HDF5, Hierarchical Data Format Version 5

Star-P® supports import and export of datasets in the Hierarchical Data Format, Version 5
(HDF5). The HDF5 format

• is widely used in the high-performance computing community,

• is portable across platforms,

• provides built-in support for storing large scientific datasets (larger than 2GB) and

• permits lossless compression of data.

For more information about the HDF5 file format, please visit http://hdf.ncsa.uiuc.edu/HDF5.

The Star-P® interface to the HDF5 file format currently supports the import and export of
distributed dense and sparse matrices with double precision and complex double precision
elements. In addition, a utility function is provided to list meta-data information about all
variables stored in a HDF5 file.

The next few sub-sections discuss the syntax of the individual HDF5 commands in more
detail.

'rb+' read and write (do not create)

'wb+' truncate or create for read and write

'ab+' read and append (create if necessary)

MODE Permission
Release 2.7 Star-P® Programming Guide for Use with MATLAB® 53

http://hdf.ncsa.uiuc.edu/HDF5

Loading And Saving Data on the Parallel Server

Writing variables to an HDF5 file

Distributed variables are written to a remote HDF5 file using the pph5write command. This
command takes a filename, and a list of pairs consisting of a distributed variable and its
corresponding fully-qualified dataset name within the HDF5 file. If the file already exists, an
optional string argument can be passed to the command: 'clobber' causes the file to be
overwritten and 'append' causes the variables to be appended to the file. The default mode
is 'clobber'. If the write mode is 'append' and a variable already exists in the location
specified, it is replaced.

Example 1

To write the distributed variables matrix_a to the dataset /my_matrices/a and
matrix_b to the dataset /my_matrices/workspaces/temp/matrix_b to the HDF5 file
temp.h5 in the /tmp directory of the HPC server, you would use:

>> matrix_a = rand(1000*p);
>> matrix_b = sprand(1200*p,1200,0.05);
>>
pph5write('/tmp/temp.h5',matrix_a,'/my_matrices/a',matrix_b,'/my_matrices/work
space/tmp/b');

Example 2

To append a distributed variable matrix_c to the HDF5 file created in the previous example
to the location /my_matrices/workspace2/temp/matrix_c, one would use:

>> matrix_c = rand(500*p);
>> pph5write('/tmp/temp.h5','append',matrix_c,'/my_matrices/workspace/tmp/c');

Reading variables from an HDF5 file

Datasets in a HDF5 file can be read into distributed variables using the pph5read command.
It takes a file name and a list of fully-qualified dataset names to read.

Example 3

To read the dataset, /my_matrices/workspaces/temp/matrix_b into a distributed
variable, matrix_d, from the file created in the first example, one would use:

>> matrix_d = pph5read('/tmp/temp.h5', '/my_matrices/workspace/tmp/b');
>> ppwhos
Your variables are:
 Name Size Bytes Class
 matrix_d 1200px1200 1134528 dsparse array (sparse)
Grand total is 70304 elements using 1134528 bytes
MATLAB has a total of 0 elements using 0 bytes

Star-P® server has a total of 70304 elements using 1134528 bytes
54 Star-P® Programming Guide for Use with MATLAB® Release 2.7

Loading And Saving Data on the Parallel Server
Querying variables stored inside an HDF5 file

It is possible to obtain a list of variables stored in an HDF5 file and their associated types
using the pph5whos command that takes in the name of the HDF5 file as its sole argument.
With a single output argument, the command returns a structure array containing the variable
name, dimensions and type information. With no output arguments, the command simply
prints the output on the MATLAB console.

Example 4

Running pph5whos on the file after running Examples 1 and 2, the following is obtained:

>> pph5whos('/tmp/temp.h5')

Representation of data in the HDF5 file

This section describes the internal representation of HDF5 files used by the functions
described previously. If the HDF5 file to be read is not generated using pph5write, it is
important to read the following subsections carefully.

Multidimensional arrays

Distributed matrices are stored in column-major (or Fortran) ordering. Therefore, pph5write
follows the same strategy used by Fortran programs that import or export data in the HDF5
format: multidimensional matrices are written to disk in the same order in which they are
stored in memory, except that the dimensions are reversed. This implies that HDF5 files
generated from a C program will have their dimensions permuted when read back in using
pph5read, but the dimensions will not be permuted if the HDF5 file was generated either
using a Fortran program or pph5write. In the former case, the data must be manually
permuted using ctranspose for two-dimensional and permute for multidimensional
matrices.

Complex data

An array of complex numbers is stored in the interleaved format consisting of a pairs of HDF5
native double-precision numbers representing the real and imaginary components.

Table 3-4

Name Size Bytes Class

/my_matrices/a 1000x1000 8000000 double array

/my_matrices/workspace/tmp/b 1200x1200[70304 nnz] 562432 double array
(sparse)

/my_matrices/workspace2/tmp/c 500x500 2000000 double array
Release 2.7 Star-P® Programming Guide for Use with MATLAB® 55

Loading And Saving Data on the Parallel Server
Sparse matrices

A sparse matrix is stored in its own group, consisting of three attributes (a sparsity flag,
IS_SPARSE, the number of rows, ROWS and the number of columns, COLS) and three
datasets (row_indices, col_indices and nonzero_vals) containing the matrix data
stored in the triplet form. All attributes and datasets are stored as double precision numbers,
except IS_SPARSE which is stored as an integer and nonzero_vals which can either be
double or double complex.

Limitations

The HDF5 interface in Star-P® currently has the following limitations:
1. Import and export of variables is restricted to types that can be represented in the Star-P®

server. Currently, this is restricted to double and complex double elements.
2. It is not possible to import or export strings, structure arrays or cells.
3. It is not possible to attach attributes to datasets or groups.
4. Each dataset must be imported or exported explicitly; support for accessing files using

wild cards or regular expressions is not yet supported.
5. Only the HDF5 file format is supported. Data files conforming to earlier versions of HDF or

raw text files must be first converted to the HDF5 format.

Differences from MATLAB HDF5 support

The HDF5 import-export features in Star-P® currently differ from that provided in MATLAB in
the following respects:
1. Permutations of dimensions for multidimensional arrays. MATLAB only permutes the first

two dimensions even for multidimensional arrays; the permutation in Star-P® is consistent
with that used for other Fortran programs

2. Handling of complex matrices. MATLAB does not support saving of complex matrices
natively.

3. Handling of sparse matrices. MATLAB does not support saving of sparse matrices
natively.

4. Handling of hdf5 objects. Star-P® currently does not support the loading and saving of
datasets described using instances of the hdf5 class supported by MATLAB.

5. Direct access to the HDF5 library. Unlike MATLAB Star-P® does not provide direct access
to the HDF5 library; all access must happen through the pph5write, pph5read and
pph5whos commands.

Converting data from other formats to HDF5
1. Download and build the HDF5 library, version 1.6.5 library. The source files can be down-

loaded from http://hdf.ncsa.uiuc.edu/HDF5/release/obtain5.html.
2. Download and build the Steven Johnson's H5utils package available at

 http://ab-initio.mit.edu/wiki/index.php/H5utils.
3. The tool h5fromtxt can be used to convert a text file into the HDF5 format and the tool

h5fromh4 can be used to convert a data file in earlier HDF formats into HDF5.
4. Once converted, the resulting data files can be directly read in using the pph5read com-

mand.
56 Star-P® Programming Guide for Use with MATLAB® Release 2.7

http://hdf.ncsa.uiuc.edu/HDF5/release/obtain5.html
http://hdf.ncsa.uiuc.edu/HDF5/release/obtain5.html
http://ab-initio.mit.edu/wiki/index.php/H5utils

Loading And Saving Data on the Parallel Server
Release 2.7 Star-P® Programming Guide for Use with MATLAB® 57

Loading And Saving Data on the Parallel Server
58 Star-P® Programming Guide for Use with MATLAB® Release 2.7

Chapter 4
Task Parallelism with Star-P® and MATLAB

In the previous chapter, the operators used on distributed arrays operated on the entire
array(s) in a fine-grained parallel approach. While this operation is easy to understand and
easy to implement (in terms of changing only a few lines of code), there are other types of
parallelism that don't fit this model. The ppeval function allows for coarse-grained parallel
computation, otherwise known as MIMD (multiple instruction multiple data) or task
parallelism, where operations are conducted on blocks, coarse-grains, of the data. This
coarse-grained computation is distributed uniformly over the number of parallel processors.
This mode of computation allows non-uniform parallelism to be expressed (e.g., the sum
operator could be used on odd columns and the max operator on even columns).

This chapter contains information on performing operations in task parallel and includes the
following:

• "The ppeval Function: The Mechanism for Task Parallelism"

• "Star-P® Naming Conventions"

• "Transforming a for Loop into a ppeval Call"

• "ppeval Syntax and Behavior"

• "ppevalsplit"

• "Choosing Your Task Parallel Engine (TPE)"

• "Per Process Execution"

• "Calling Non-”M” Functions from within ppeval"

• "Workarounds and Additional Information"

The ppeval Function: The Mechanism for Task Parallelism

ppeval allows you to execute built-in functions and user-defined functions in parallel on a
High Performance Computer. ppeval handles the distribution of data and code over the
processors in the HPC, as well as the execution and the gathering of computational results.
Release 2.7 Star-P® Programming Guide for Use with MATLAB® 59

The ppeval Function: The Mechanism for Task Parallelism
To define some of relevant terminology for ppeval, let’s look again at the example from
“Extending MATLAB with Star-P®”.

Xpp = rand(1000,1000,100*p);
Ypp = ppeval('inv',Xpp);

In this example, the ppeval call splits up the variable Xpp into 100 individual slices (by default
splitting is done along the last dimension). The slices are then divided over the available
processors; so in the case of 100 slices and 10 processors, each processor would receive 10
slices. Each processor iterates over the slices it receive and applies the function 'inv' to
each of the slices. When each processor completed its job, the results of all processors are
combined, preserving order, and returned as the output value.

You can view ppeval as a parallel loop. You cannot assume anything about the order in
which the iterations occur or the processor(s) on which they occur. Since the computations of
the individual iterations are performed in complete isolation of all the other iterations, ppeval
requires that the computation being performed is independent over the iterations.
Consequently, functions that contain recursive relations or that update variables based on
sequentially previous iterations inside the function body are not applicable for task-parallel
execution.

Any function passed to ppeval must be either a built-in MATLAB1 function or a
user-supplied MATLAB function in a .m file; a function named foo for example. As with any
function called from MATLAB (or Star-P®), the function must exist in a file of the name foo.m
located in one of the directories visible to the MATLAB directory search path on the system
where the Star-P® client is running. As well as the particular function itself, files containing
any functions that are called by foo.m, down to the level of the built-in operators, must be
accessible in directories in the MATLAB search path. All of these identified files will be
transferred to the HPC server for execution. For a discussion on calling a non-MATLAB
function via the MATLAB system function, see “Calling non-MATLAB functions within a
ppeval.”

1. A subset of the MATLAB operators are supported. While you might want to extend this set with
routines that are part of MATLAB or one of its toolboxes, The MathWorks software license
prohibits this for the way the ppeval is implemented. To comply with this prohibition, ppeval
will not move to the HPC server any routines that are generated by The MathWorks.
60 Star-P® Programming Guide for Use with MATLAB® Release 2.7

Star-P® Naming Conventions
Star-P® Naming Conventions

Star-P® commands and data types generally use the following conventions, to distinguish
them from standard MATLAB commands and data types:

• Most Star-P® commands begin with the letters pp, to indicate parallel. For example,
the Star-P® ppload command loads a distributed matrix from local files. Exceptions
to this rule include the split and bcast commands.

• Star-P® data types begin with the letter d, to indicate “distributed”. For example, the
Star-P® dsparse class implements distributed sparse matrices.

The following convention for displaying Star-P® related commands and classes is used
throughout this chapter.

Transforming a for Loop into a ppeval Call

The typical work-flow of introducing ppeval into a code that is currently serial takes the
following steps:

1. Identify a for loop that is embarrassingly parallel.

2. Determine the input and output variables of the for loop.

3. Transform the body of the for loop into a function.

4. Call your newly defined function with ppeval using the correct input and output
variables.

Here we will walk through an example of these steps. Below we will discuss ways in which
the user can control the splitting and broadcasting behavior of the input variables to ppeval.

Step 1: Identify a for loop that is embarrassingly parallel.

x = rand(n,n,m);
y = rand(n,m);
z = zeros(n,m);

for i = 1:m
 [v d] = eig(x(:,:,i));

Command/Variable Font

p & other dlayout variables bold green font
Distributed variables bold blue font

Star-P® functions bold black font
Release 2.7 Star-P® Programming Guide for Use with MATLAB® 61

Transforming a for Loop into a ppeval Call
 a = v*y(:,i) + diag(d);
 z(:,i) = x(:,:,i)\a;
end

The for loop in this example is indeed embarrassingly parallel since it contains no recurrent
relations and/or variable updates. In principle, if we had m computers, then we could compute
one iteration of the for loop on every computer and obtain the correct result after
recombining them.

Step 2: Determine the input and output variable of the loop

The input variables to the loop are x and y and the output variable is z. The variables v, d,
and a are variables whose scope is limited to the for loop.

Step 3: Transform the body of the for loop into a function

The function foo1, defined below, contains the for loop body content with output variable z
and input variables x and y.

function z = foo1(x,y)

[v d] = eig(x);
a = v*y + diag(d);
z = x\a;

Note that we removed all of the indexing operations that are present in the for loop body in
Step 1. Since the ppeval process splits the variables x and y into individual slices along the
last dimension (by default), ppeval does the indexing operations for you in the process of
dividing of the input data and gathering the output data.

Step 4: Call function defined in Step 3 with ppeval

Now that we have the defined our function foo1 and we know the input and the output
arguments, we can perform the ppeval call:

X = rand(n,n,m*p);
Y = rand(n,m*p);
Zpp = ppeval('foo1',X,Y);

This completes the transformation of the serial for loop to a task-parallel execution of the
same code with Star-P®.

Note: X and Y do not necessarily have to be distributed objects. See "Splitting" and
"Broadcasting" for more details.
62 Star-P® Programming Guide for Use with MATLAB® Release 2.7

ppeval Syntax and Behavior
Note: It might seem natural that you could transform a for loop to run in parallel just
by adding a *p to the loop bounds. Unfortunately, this does not have the desired
effect. The simplicity of this approach has not been lost on the Star-P® developers,
and some support for this method may appear in a future release.

ppeval Syntax and Behavior

This section covers the following topics:

• “ppeval Syntax Grammar”

• “Requirements of Functions Passed to ppeval”

• “Input Arguments”

• “Output Arguments”

• “Examples of ppeval Usage”

• “Star-P® M TPE”

• “Star-P® Octave Engine”

• “C/C++ Engine for Running Compiled C/C++ Package Functions”

• “String Arrays”

• “Splitting on a Scalar”

• “Global Variables”

ppeval Syntax Grammar

The syntax of ppeval is similar to that of eval or feval.

[o1 o2 ... oN] = ppeval('foo', In1, In2, ..., InN);

foo is the name of the function you would like to execute in task-parallel. In1, In2, ... are the
input arguments to func and o1, o2, ... are the output arguments to foo. The supported
input argument types are: strings, function handles, scalars, arrays, and matrices (see
workaround section below for input arguments of type string-array and struct-array) and the
supported output arguments are scalars, arrays, and matrices.
Release 2.7 Star-P® Programming Guide for Use with MATLAB® 63

ppeval Syntax and Behavior
Requirements of Functions Passed to ppeval
ppeval puts a few requirements on a function foo:

• The dimensions of all input arguments that are split up over the processors all need
to have the same size.

• At least one of the input arguments needs to be split up over the processors, or in
other words, at least one of the input arguments needs to be an array or matrix.

• The function foo can have a maximum of 58 input arguments.

• The function foo must return at least 1 output argument.

• The output arguments of the function need to have the same size for each iteration
of the function foo (see Output Arguments)

• foo must be an actual MATLAB function file, it cannot be a script file.

• The function foo cannot contain nested functions.

Input Arguments

The user has complete control over the splitting and broadcasting of input variables with the
split/ppsplit and bcast/ppbcast commands. These commands can only be used in
conjunction with the ppeval command.

Default Behavior

By default all scalars, strings, and function handles are broadcast to every processor on the
HPC. Every processor receives an identical copy. Arrays and matrices are split up into slices
along the last dimension and divided over the processors. The default behavior of splitting
and broadcasting input arguments can be overridden by the user.

Splitting

To split an array or matrix in a dimension other than the last dimension, use the split
command in conjunction with ppeval. The syntax of the split/ppsplit commands are

split(A,DIM)
ppsplit(A,DIM)

where A is the input argument and DIM is the dimension along which you want to split the
variable A. The possible arguments to split and ppsplit are:

split(A,DIM) or ppsplit(A,DIM): Split variable A along dimension DIM
split(A,0) or ppsplit(A,0) : Split over individual elements of variable A
split(A) or ppsplit(A): Split variable A along final dimension (default)

As stated above the split and ppsplit command can only be used in conjunction with
ppeval. For example:
64 Star-P® Programming Guide for Use with MATLAB® Release 2.7

ppeval Syntax and Behavior
Xpp = rand(100*p,1000,1000);
Ypp = ppeval('inv',split(Xpp,1));

performs 100 matrix inversions. Each inversion is performed on a matrix 1000-by-1000 in
size, because the variable Xpp is split along the first dimension.

Broadcasting

To broadcast an array or matrix to every processor, include the argument in a bcast
command. You would use the bcast command if you want to send an array or matrix
variable in its entirety to every processor. As with ppsplit, the ppbcast command needs to
be used in conjunction with the ppeval command. For example, to add a 2D matrix, Xpp, to
every slice of the 3D array Ypp, then issue the following command:

Xpp = rand(n*p);
Ypp = rand(n,n,m*p);
Zpp = ppeval('+',Ypp,bcast(Xpp));

This ppeval command is equivalent to the following for loop, apart from the fact it is
performed in parallel as opposed to serial execution:

x = rand(n);
y = rand(n,n,m);
z = zeros(n,n,m);

for i = 1:m
 z(:,:,i) = y(:,:,i) + x;
end

Supported Input Argument Types

The supported input argument types are: strings and functions handles, as well as scalars,
arrays, and matrices of type double and complex double. Scalars, arrays, and matrices of
other types (for example single, ints, logical) are first converted to type double before being
transferred to ppeval. By default, strings, function handles and scalars are broadcast.

Serial ppeval of Functions with Scalar Inputs

This section discusses how you can use ppeval in non-broadcast (serial mode) with a single
scalar input argument.

Using Star-P® Octave TPE

Using ppeval ('functionname',<scalar-value>) with the Octave engine
(octave) produces the error shown in the example.

Example

>> ppsetoption('TaskParallelEngine','octave')
Release 2.7 Star-P® Programming Guide for Use with MATLAB® 65

ppeval Syntax and Behavior
>> ppeval('rand',1)
??? Error using ==> ppeval_octave at 208
At least one argument in a call to ppeval must be split
(either implicitly or explicitly)

The message indicates that at least one of the input arguments must be split. By default scalar
input arguments are not split. They are broadcast. It is possible to split on a scalar by explicitly
including the split command, such as:

>> ppeval('rand',split(1));

This results in one function evaluation of the function rand with the input argument 1.

Using Star-P® M TPE

Using ppeval('myfunction',<scalar-value>) with the Star-P® M
(starp_tpe) task-parallel engine results in the execution of the function myfunction) on
each Star-P® HPC server process with each using the input argument <scalar-value>.

Example
>> ppsetoption('TaskParallelEngine','starp_tpe')
>> ppeval('ones',1) % This example was run on a two processor install

ans =
 1x2 double

 So, the execution of ppeval is effectively a per process evaluation of function ones. If you
want to have just one function evaluation use the split function.

Example

>> ppsetoption('TaskParallelEngine','starp_tpe')
>> ppeval('rand',split(1))% This syntax works the same as w/ the octave engine.
ans =
 0.8147

Client vs. Server Variables

In the examples above, we used the *p construct to create the data that ppeval operates
on. It is now a necessary requirement that ppeval operates on server variables only. In the
case that ppeval receives a client variable, say a MATLAB variable, ppeval will first move
the client variable to the server. Then the task parallel operation will be performed. Hence the
result of operating on a client or server variable will be exactly the same. However, since the
client variable must be moved from the client to the server, you will incur a performance
penalty (moving large amounts of data of networks can be costly).
66 Star-P® Programming Guide for Use with MATLAB® Release 2.7

ppeval Syntax and Behavior
Distribution of input variables

The Star-P® server stores variables in a distributed matrix fashion. The information/memory
contained by one variable is divided across the processors with each processor having
access to part of the data. Star-P® supports several distributions. 2D matrices can be stored
by rows or columns, where each processor has access to a single set of rows or columns
respectively. ND arrays can be distributed only along one of the dimensions.

For the correctness of the ppeval execution, the dimensions of distributions for server
variables are not important. However, the dimensions of distributions do have an effect on the
performance characteristics of the ppeval execution. The best performance is achieved
when the distributed dimension and the split dimension are the same; for example, splitting
an input variable Xpp, defined by Xpp = rand(10,10*p,10);, as push-pull(Xpp,2).

This superior performance occurs because all of the data is already distributed to the correct
processors. As a counter-example, if an input variable is row-distributed (along the first
dimension of a 2D matrix), and the ppeval splits the input along the columns (along the
second dimension of a 2D matrix), then the first operation that must be performed is a
distribution change of the input data. These operations do not come free, because they do
cost communication time to perform. Consequently, the optimal performance of a ppeval
operation occurs when all of the variables to be “split” are distributed along the same
dimension as the dimension requested for the split or ppsplit operations.

Output Arguments

The supported output arguments to ppeval are scalars, arrays, and matrices of type double
and complex-double. Scalars, arrays, and matrices of different types are converted to double
before being handed from the task parallel engine to Star-P®. Additionally, each of the output
arguments of the function called by ppeval need to have the same size for each iteration, or
for each input slice for that function. For example, the following function func2, with input
scalar variables in1 and in2, always returns output variables of size 1-by-10, 3-by-5 and
13-by-1:

function [out1 out2 out3] = func2(in1, in2)

out1 = zeros(1,10);
out2 = zeros(3,5);
out3 = zeros(13,1);

out1(:) = in1 + in2;
out2(:) = in1 / in2;
out3(:) = in1 * in2;

As you can see, for every call to func2, the outputs will have exactly the same size. The
requirement that the function called by ppeval returns arguments of the same size is
important because of the way that ppeval returns the aggregate of task parallel
computation. ppeval laminates the outputs for each iteration together along an additional
dimension. The rules for laminating the output are the following:
Release 2.7 Star-P® Programming Guide for Use with MATLAB® 67

ppeval Syntax and Behavior
1. If the output is a scalar, then laminate them in the column direction, and distribute by
columns.

2. If the output is a row-vector, then laminate them in the row dimension, and distribute by
rows.

3. If the output is a column-vector, then laminate them in the column dimension, and
distribute by columns.

4. If the output is a 2D array or ND array, then laminate them in an additional dimension,
and distribute along that dimension.

This means that if the size of the output argument of the function called by ppeval is
k-by-1 and the ppeval operation performs r iterations, then the output of ppeval is of size
k-by-1-by-rp.

Examples of ppeval Usage

Let’s first consider a simple example. Rather than using the built-in sum function on a
ddense array, you could code it using ppeval and sum on a row or column.

>> n = 100
n =
 100
>> App = 1:n*p
app =
 ddense object: 1-by-100p
>> Bpp = repmat(App,n,1)
bpp =
 ddense object: 100-by-100p
>> ppfront(Bpp(1:6,1:6))
ans =
 1 2 3 4 5 6
 1 2 3 4 5 6
 1 2 3 4 5 6
 1 2 3 4 5 6
 1 2 3 4 5 6
 1 2 3 4 5 6
>> Cpp = ppeval('sum',Bpp)
Cpp =
 ddense object: 1-by-100p
>> ppfront(Cpp(1,1:6))
ans =
 100 200 300 400 500 600
>> Epp = ppeval('sum',ppsplit(Bpp,1))
Epp =
 ddense object: 1-by-100p
>> ppfront(Epp(1,1:6))
ans =
68 Star-P® Programming Guide for Use with MATLAB® Release 2.7

ppevalsplit
 5050 5050 5050 5050 5050 5050

• The first call in the previous ppeval example uses the default behavior to split its
arguments along the last dimension (columns, in the case of 2D matrices).

• The variable b in the previous example did not need to be distributed, created with
the *p construct, or transferred to the server using ppback, because ppeval
automatically handled its distribution on the server.

• In the second call to ppeval, it was desired to split along rows, so the ppsplit
function was used explicitly to obtain that result.

In this example, the function 'sum' was called on each column of the input array. While
useful for a simple example of functionality, you would not do this in practice because the
sum operator on the whole array has the same behavior and is simpler to use. However, as
shown in the next example, the function passed to ppeval does not have to perform the
same computation for each input, and thus can be used to implement MIMD/task parallelism.

In this example, we will make use of the MATLAB function quad, which computes the definite
integral of a function over an interval. The function being integrated could be highly nonlinear
in its behavior, but ppeval supports that functionality.

If the file func3.m contains the following:

>> type func3
function b = func3(a)
b = (a^2-1) / (a+eps);

then ppeval can be called as:

>> n = 100; % number of intervals
>> App = (0:(n-1)*p)/n % lower bounds of intervals
app =
 ddense object: 1-by-100p
>> Bpp = (1:n*p)/n % upper bounds of intervals
bpp =
 ddense object: 1-by-100p
>> Bpp = ppeval('quad',@func3,App,Bpp)
cpp =
 ddense object: 1-by-100p
>> ppfront(Cpp(1,1:6))
ans =
 -31.4384 -0.6930 -0.4052 -0.2873 -0.2227 -0.1818

This example also illustrates the use of a function handle (@func3).

ppevalsplit

In the case where the function returns a different size output for every iteration (see func4
below) the ppeval procedure will fail since there is no logical way of laminating the output
Release 2.7 Star-P® Programming Guide for Use with MATLAB® 69

Choosing Your Task Parallel Engine (TPE)
values of the function. In this case, Star-P® provides the user with the ppevalsplit
command, which returns the outputs of the individual iterations in a cell array to the client.
Cell arrays are capable of holding variables of different sizes. Although the cell array returned
from a ppevalsplit call is stored as a variable of type dcell on the Star-P® server, when
indexing into a dcell array, the contents are automatically returned to the client. An example
of a function that returns differently sized outputs and how to use it with ppevalsplit
follows:

function out1 = func4(in1)
%
% func4 returns a random column vector of size in1-by-1
%
out1 = rand(in1,1);

end

Call the function func4 with ppevalsplit:

in = 1:10;
outpp = ppevalsplit('func4',in);

The output outpp will be of type dcell and contain:

outpp{1} : 1-by-1 random vector
outpp{2} : 2-by-1 random vector
...
outpp{10} : 10-by-1 random vector

Choosing Your Task Parallel Engine (TPE)

When performing task parallel operations in Star-P®, ppeval and ppevalsplit allow for
you to make a choice as to the environment that will be utilized for performing task parallel
operations.

In using ppeval or ppevalsplit, use one of the following as your task parallel engine:

• Star-P® M TPE

• Star-P® Octave Engine

• C/C++ Engine for Running Compiled C/C++ Package Functions

The Star-P® M TPE and Star-P® Octave TPE provide high performance computing
compatible with MATLAB m-files.

Note! The Star-P® M TPE provides the fastest performance times for non-Altix users.
70 Star-P® Programming Guide for Use with MATLAB® Release 2.7

Choosing Your Task Parallel Engine (TPE)
When choosing the option of using your own compiled C/C++ functions, packages must be
loaded on to the server and used in accordance with the instructions specified in the “Star-P®
Software Development Kit (SDK) Tutorial and Reference Guide”.

Note! Choose an Octave task-parallel engine for task parallel applications that use sparse arrays
or if you are running Star-P® on Altix. Star-P® TPE support for sparse task parallel
operations will be implemented as a follow on to Star-P® Release 2.7.

Star-P® M TPE

The Star-P® M task-parallel engine (starp_tpe) is native to Star-P® and yields the best
overall performance for non-Altix users when using ppeval. Select it by using the following
call:

ppsetoption('TaskParallelEngine','starp_tpe')

Note! Choose an Octave task-parallel engine for task parallel applications that use sparse arrays
or if you are running Star-P® on Altix. Star-P® TPE support for sparse task parallel
operations will be implemented as a follow on to Star-P® Release 2.7.

Star-P® Octave Engine

You can choose Octave as the task parallel engine used when you call ppeval. If your task
parallel codes require the use of MEX file functionality or include functionality that was not
included in Octave 2.9.5, then you will want to set the task parallel engine to Octave 2.9.9 by
calling:

ppsetoption('TaskParallelEngine','octave-2.9.9')

Within a given Star-P® session, only a single version of Octave can be set using
ppsetoption.

For example, once there has been a call to ppsetoption using:

ppsetoption('TaskParallelEngine','octave-2.9.9')

you cannot switch to Octave 2.9.5 during a particular Star-P® session. By initially calling:

ppsetoption('TaskParallelEngine','octave-2.9.5')

then you are setting the Octave version to be 2.9.5 for the duration of a session. The first call
to ppsetoption('TaskParallelEngine','octave-2.9.x') sets the available
Octave engine for that particular Star-P® session.
Release 2.7 Star-P® Programming Guide for Use with MATLAB® 71

ISC_StarP_SDK_Tutorial_R26.pdf
ISC_StarP_SDK_Tutorial_R26.pdf
ISC_StarP_SDK_Tutorial_R26.pdf

Per Process Execution
C/C++ Engine for Running Compiled C/C++ Package Functions

In order to set the task parallel engine to use your own compiled C/C++ functions,
ppsetoption can be configured in the following manner:

ppsetoption('TaskParallelEngine','C')

This allows you to write functions that run in parallel in C/C++ rather than Octave or Star-P®
M with the Star-P® TPE. Use it if you have serial libraries in C and C++ you want to use in a
task parallel manner. Using ppeval or ppevalsplit makes it easy to write wrapper
functions in C/C++ using the task parallel Star-P® SDK API. When using ppeval or
ppevalsplit in this manner, you need to build the function on the server and copy the
module over to the HPC server machines.

The function pploadpackage can be used to load previously compiled shared object
libraries whose contents can then be called using ppeval. Loading a compiled library for
task parallel operations using pploadpackage requires calling syntax in one of two
manners:

stringTP = pploadpackage('C','/path/to/package.so','TPname')
stringTP = pploadpackage('C','/path/to/package.so')

In either case, pploadpackage loads a package named 'package.so' containing
compiled functions for later use in ppeval. The initial string 'C', specifies the language in
which the target package is written. Currently, only C or C++ libraries can be loaded on the
server for task parallel operation, and both require the same initial string. The keyword
argument “name” specifies a user-defined name that is used for identification of the task
parallel package on the server. The string provided with the keyword argument name is
returned in the function output stringTP. If the name keyword is not provided, then the
naming convention utilized for assigning an output string to stringTP is to take the filename
without path, extension, or underscores, converted to lowercase. This change ensures that
the default name can always be used to prefix a function name, and is recognizable by the
Star-P® client and server.

For more information about the task parallel API for using ppeval and ppevalsplit with
compiled languages, see the “Star-P® Software Development Kit (SDK) Tutorial and
Reference Guide”.

Per Process Execution

It is often useful to perform a certain operation only once per processor rather than
performing the exact same operation within each iteration. Examples of such operations
include opening and closing files or setting global variables. To enable a per process
execution, one can use the Star-P® function named np, which returns the number of
processors active in the current Star-P® session. For instance, the following sections of code
72 Star-P® Programming Guide for Use with MATLAB® Release 2.7

ISC_StarP_SDK_Tutorial_R26.pdf
ISC_StarP_SDK_Tutorial_R26.pdf
ISC_StarP_SDK_Tutorial_R26.pdf
ISC_StarP_SDK_Tutorial_R26.pdf

Calling Non-”M” Functions from within ppeval
exemplify how to open a file for reading, read and process the data in the file, and close the
file:

% Open the file in the variable filename on each ppeval process
fidpp = ppeval('open_file',filename,ppsplit(1:np));
% Apply algorithm to data samples contained in filename
resultspp = ppeval('process_file',1:num_data_samples);
% Close the file on each process
ppeval('fclose',fidpp);

where the functions open_file and process_file could look something like:

function fid = open_file(filename, pid)
% store file descriptor in global variable as well as return to client
global fid
%
fid = fopen(filename,'r');
gfid = fid;

and

function result = process_file(sample)
%
global gfid
% Read part of the data using fseek and fwrite and take an fft
sample_size = 8192;
% fseek to the correct location in the file
fseek(fid,sample_size*(sample-1),-1);
% Read the relevant section of the data
result = fread(gfid,sample_size);
% Apply the Fourier transform
result = fft(result);

Note that in the first line of the example above we used ppsplit(1:np) instead of 1:np.
This is because in the case that np happens to be equal to 1, the expression 1:np returns a
scalar. Normally, this input syntax is not valid due to the fact ppeval has no input argument
over which it can iterate. In other words, ppeval received a string and a scalar, both of which
will be broadcast by default. To override this behavior, use the ppsplit command on the
1:np expression.

Calling Non-”M” Functions from within ppeval

The ppeval function can also be used to call a non-MATLAB program, via the system
function and get results from that executable back into the Star-P® context. The simple
example here illustrates a function callapp2 that calls a pipeline of shell commands that
returns the number of currently executing processors for a given user ID.

>> type callapp2
Release 2.7 Star-P® Programming Guide for Use with MATLAB® 73

Calling Non-”M” Functions from within ppeval
function z = callapp2(uid)
s = sprintf('ps -ael | grep %i | wc -l\n',uid)
[status, result] = system(s);
z = str2num(result);

Calling this from ppeval works as follows:

>> App = ppback([501 503 563 570])
App =
 ddense object: 1-by-4p
>> Bpp = ppeval('callapp2',split(App))
Bpp =
 ddense object: 1-by-4p
>> ppfront(Bpp)
ans =
 50 0 0 4

Note: In this case, the variable App has been split evenly to the available processors,
which can be displayed by np. The default behavior of split(App) is to
distribute along the last dimension, for example, split(App,2).

You may want to note several things about this example.

1. It is not necessary for the number of calls made by ppeval to match the number of
processors. ppeval uniformly allocates the number of calls over the number of
processors available to the Star-P® session when the call is made.

2. Second, there is no built-in way for each column to know which column of the input it
is. If that information is necessary for some reason, you will need to create such a
vector and pass it in as another argument. For example, you can use the following
statement:

>> Bpp = ppeval('callapp2',App,1:size(App,2));

3. Because ppeval is intended to take advantage of parallelism, each invocation of
callapp2 is done on a single processor of the HPC server. Star-P® takes care of the
details of moving the function file (callapp2 in this case) to the file system on the HPC
server. Screen output from the called function will not appear on the Star-P® client. If
you are reading or writing files in the called function, you will need to do those via paths
relative to the file system structure on the server, not the current working directory of
the MATLAB client. (Of course, if the file systems are the same between the client and
the server, for example if they are NFS-mounted, then this is not an issue.)

By extension of this last example, almost any executable program could be called in parallel
via ppeval using the system command, including end-user applications (written in C, C++
or Fortran) or third-party applications such as ANSYS, NASTRAN, FLUENT, or Gaussian. For
further information on incorporating external applications in Star-P®, see the “Star-P®
Software Development Kit (SDK) Tutorial and Reference Guide”.
74 Star-P® Programming Guide for Use with MATLAB® Release 2.7

ISC_StarP_SDK_Tutorial_R26.pdf
ISC_StarP_SDK_Tutorial_R26.pdf
ISC_StarP_SDK_Tutorial_R26.pdf
ISC_StarP_SDK_Tutorial_R26.pdf
ISC_StarP_SDK_Tutorial_R26.pdf

Workarounds and Additional Information
Workarounds and Additional Information

Below we discuss a couple of workarounds to some of the limitations that result from the
requirement on the types of the input and output argument to ppeval. There are however
several ways to work around these limitations. This section provides guidelines for the
following:

• “String Arrays”

• “Splitting on a Scalar”

• “Global Variables”

String Arrays

To work with string arrays and ppeval, we use the fact that characters can be converted to
variables of type double and doubles can be converted to variables of type character. So with
minor modifications to a code, we can incorporate string arrays into applications that use
ppeval to increase their performance.

str_arr = ['filename1';'filename2';'filename3'];
fnames = char(ppfront(ppeval('func',double(str_arr))));

with func defined below as follows:

function y = func(x)

y = x;

The ppfront command in this example is necessary since the char function has not been
implemented in Star-P® and since Star-P® currently can only store objects of type double or
double-complex.

Splitting on a Scalar

As mentioned in the section “Per Process Execution” above, it is possible to ppsplit on a
scalar. This is a useful capability when one wants to do something only once, as in reading in
an ASCII file on the server.

Global Variables

When running code inside of a ppeval command, several global variables that are specific
to Star-P® are defined. These are:

1. PP_COMM_SIZE : The number of processors and ppeval engine processes.

2. PP_MY_RANK : The rank of this ppeval engine process, running from 0 to
PP_COMM_SIZE-1.
Release 2.7 Star-P® Programming Guide for Use with MATLAB® 75

Workarounds and Additional Information
3. PP_TEMP_DIR : The temporary work directory for the ppeval engine process.

4. PP_CUR_ITER : The value of the current iteration for each ppeval engine process.
The PP_CUR_ITER counter runs from one to the number of slices for each ppeval
engine process.
76 Star-P® Programming Guide for Use with MATLAB® Release 2.7

Chapter 5
Tips and Tools for High Performance Star-P® Code

Star-P® enables MATLAB users to harness the computing power of HPC systems from within
their familiar desktop environment. But as with any other software development environment
or tool, there are advantageous and disadvantageous methods of using Star-P®.

This chapter provides tips for structuring your MATLAB codes for optimal performance using
Star-P® and describes tools that can be utilized for monitoring and profiling the performance
of your MATLAB applications using Star-P®. The tips and tools contained in this chapter are
organized into the following sections:

• "Performance and Productivity"

• "Tips for Data Parallel Code"

• "Tips for Task Parallel Code"

• "Using External Libraries"

• "Integer Arithmetic in Star-P® Compared with MATLAB®"

• "Accuracy of Star-P® Routines"

• "Configuring ppsetoption for High Performance"

• "Performance Tuning and Monitoring"

• "UNIX Commands to Monitor the Server"

Performance and Productivity

The two most common reasons for users moving off their desktops to parallel computers are:

• to solve larger problems

• to solve problems faster
Release 2.7 Star-P® Programming Guide for Use with MATLAB® 77

Performance and Productivity
By contrast, users solve problems with MATLAB to take advantage of:

• ease of use

• high level language constructs

• productivity gains

To make the most of Star-P®, you need to find your own “comfort level” in the trade-off
between productivity and performance. This is not a new trade-off. In 1956, the first so-called
high level computer language was invented: FORTRAN. At the time, the language was highly
criticized because of its relatively poor performance compared to programs that were highly
tuned for special machines. Of course, as the years passed, the higher-level language
outlasted any code developed for any one machine. Libraries became available and
compilers improved.

This lesson is valuable today. To take advantage of Star-P®, you will benefit from simply
writing MATLAB code, and inserting the characters *p at just the right times. You can improve
performance both in terms of problem sizes and speed by any of the following means:

• restructure the serial MATLAB program through vectorization (described in
“Vectorization”)

• restructure the serial MATLAB program through uses of functionally equivalent
commands that run faster

• restructure the serial MATLAB program through algorithmic changes

You may not wish to change your MATLAB programs. Programs are written in a certain style
that expresses the job that needs to be done. Psychologically, a change to the code may feel
risky or uncomfortable. Programmers who are willing to make small or even large changes to
programs may find huge performance increases both in serial MATLAB and with Star-P®.

Typically, changes that speed up serial MATLAB also speed up Star-P®. In other words, the
benefits of speeding up the serial code multiply when going parallel.

You may want to develop new applications rapidly that work on very large problems, but
absolute performance may not be critically important. The MATLAB operators have proven to
be very powerful for expressing typical scientific and engineering problems. Star-P® provides
a simple way to use those operators on large data sets. Today, Star-P® is early in its product
life, and will undoubtedly see significant optimizations of existing operators in future releases.
Your programs will transparently see the benefit of those optimizations. You benefit from ease
of use and portability of code today.
78 Star-P® Programming Guide for Use with MATLAB® Release 2.7

Tips for Data Parallel Code
Tips for Data Parallel Code

Vectorization

Vectorization is the process of converting a code from explicit element-by-element
calculations to higher level operators that operate on entire vectors or arrays at a time.
Vectorization reduces the amount of time spent in MATLAB or Star-P® bookkeeping
operations and increases the amount of time spent doing the mathematical operations that
are the purpose of your program. Vectorization is a process well known to many experienced
MATLAB programmers, as it often gives markedly better performance for MATLAB execution.
In fact, The MathWorks provides an online tutorial about vectorization at
http://www.mathworks.com/support/tech-notes/1100/1109.html. The process of vectorization for
both MATLAB and Star-P® execution is the same.

Vectorization speeds up serial MATLAB programs and eases the path to parallelization in
many instances.

Note: The following MATLAB timings were performed on a Dell Dimension 2350. The
Star-P® timings were performed on an SGI Altix system. Note that small test
cases are used so that the unvectorized versions will complete in reasonable
time, so the speedups shown in these examples are modest.

Example 4-1: Sample summation of a vector

The following MATLAB® code is not vectorized:

>> v = 1:1e6;
>> s = 0;
>> tic;
>> for i=1:length(v), s = s+v(i); end
>> toc;
Elapsed time is 0.684787 seconds.
>> s
s =
 5.0000e+11

The following line is vectorized:

>> v = 1:1e6;
>> tic;
>> s = sum(v);
>> toc;
Elapsed time is 0.003273 seconds.

The two ways of summing the elements of v give the same answer, yet the vectorized version
using the sum operator runs more than 100 times faster. This is an extreme case of the
speed-up due to vectorization, but not rare. Expressing your algorithm in high level operators,
Release 2.7 Star-P® Programming Guide for Use with MATLAB® 79

Tips for Data Parallel Code
provides more opportunities for optimization by Star-P® (or MATLAB) developers within those
operators, resulting in better performance.

The following MATLAB code is parallelized:

>> vpp = 1:1e6*p;
>> s = sum(vpp);

Based on the vectorized form, it is straightforward to move to a parallel version with Star-P®.
Note that the unvectorized form, since it’s calculating element-by-element, would be
executing on only a single processor at a time, even though Star-P® would have multiple
processors available to it!

Example 4-2: Simple polynomial evaluation

The following MATLAB code is not vectorized:

>> v = 1:1e7;
>> w = 0*v;
>> tic;
>> for i=1:length(v), w(i) = v(i)^3 + 2*v(i); end
>> toc;
Elapsed time is 19.815496 seconds.
% The following code is vectorized
>> tic;
>> w = v.^3 + 2*v;
>> toc;
Elapsed time is 2.137521 seconds.
% The following code is parallelized
>> vpp = 1:1e7*p;
>> tic;
>> wpp = vpp.^3 + 2*vpp;
>> toc;
Elapsed time is 0.118621 seconds.

This example shows exactly the value of vectorization: it creates simpler code, as you don’t
have to worry about getting subscripts right, and it allows the Star-P® system bigger chunks
of work to operate on, which leads to better performance.

Example 4-3: BLAS-1 compared to BLAS-3 matrix multiplication

This example compares two methods of multiplying two matrices. One (partially vectorized)
uses dot n2 times to calculate the result. The vectorized version uses the simple * operator
to multiply the two matrices; this results in a call to optimized libraries (PBLAS in the case of
Star-P®) tuned for the specific machine you’re using. These versions compare to the BLAS
Level 1 DDOT and BLAS Level 3 DGEMM routines, where exactly the same effect holds.
Higher-level operators allow more flexibility on the part of the library writer to achieve optimal
performance for a given machine.
80 Star-P® Programming Guide for Use with MATLAB® Release 2.7

Tips for Data Parallel Code

Contents of the script mxm.m:

>> type mxm
for i=1:n
 for j=1:n
 c(i,j) = dot(a(i,:),b(j,:));
 end
end
>> n = 1000;
>> a = rand(n); b = rand(n);
% Unvectorized
>> tic; mxm; toc;
Elapsed time is 70.821620 seconds.
% Vectorized on a single processor
>> tic; d = a*b; toc;
Elapsed time is 0.431142 seconds.
% Vectorized and parallel
>> npp = n*p;
>> app = rand(npp); bpp = rand(npp);
>> tic; dpp = app*bpp; toc;
Elapsed time is 0.118349 seconds.

 Example 4-4: Recognizing a histogram

This example is a bit fancy. If you are going to restructure this construct, it requires you to
recognize that two computations are the same; the first is not vectorized, while the second
may be considered vectorized. Here the trick is to recognize that the code is computing a
histogram and then cumulatively adding the numbers in the bins.

Form 1: Unvectorized and unrecognized:

>> v = rand(1,1e7);
>> w = [];
>> i = 0;
>> tic;
>> while (i<1), i=i+0.1; w = [w sum(v<i)]; end
>> toc
Elapsed time is 0.947873 seconds.
>> w.'
ans =
 997890
 1998324
 2996577
 3997599
 4999280
 6000307
 7000870
 8000829
 9000054
 10000000
 10000000
Release 2.7 Star-P® Programming Guide for Use with MATLAB® 81

Tips for Data Parallel Code

Form 2: Vectorized cumulative sum and histogram:

>> tic; w = cumsum(histc(v,0:.1:1)); toc
Elapsed time is 0.382109 seconds.
>> w.'
ans =
 997890
 1998324
 2996577
 3997599
 4999280
 6000307
 7000870
 8000829
 9000054
 10000000
 10000000

As one would expect, the vectorized version works best in Star-P® as well.

Star-P® Solves the Breakdown of Serial Vectorization

For all but the smallest of loops, vectorization can give enormous benefits to serial MATLAB
code. However, as array sizes get larger, much of the benefit of serial vectorization can break
down. The good news is that in Star-P® vectorization is nearly always a good thing. It is
unlikely to break down.

The problem with serial MATLAB is that as variable sizes get larger, MATLAB swaps out the
memory to disk. This is a very costly measure. It often slows down serial MATLAB programs
immensely.

There is a serial approach that can partially remedy the situation. You may be able to rewrite
the code with an outer loop that keeps the variable size small enough to remain in main
memory while large enough to enjoy the benefit of vectorization. While for some problems
this may solve the problem, users often find the solution ugly and not particularly scalable.
The other remedy uses the Star-P® system. This example continues to use vectorized code,
inserting the Star-P® at the correct points to mark the large data set.

As an example, consider the case of FFTs performed on matrices that are near the memory
capacity of the system MATLAB is running on.

>> n = 1.2*10^4;
>> a = rand(n);
>> app = rand(n*p);
>> tic; b = fft(a); toc;
Elapsed time is 92.685374 seconds.
>> tic; bpp = fft(app); toc;
Elapsed time is 6.916634 seconds.
82 Star-P® Programming Guide for Use with MATLAB® Release 2.7

Tips for Data Parallel Code
While you would expect Star-P® to be faster due to running on multiple processors, Star-P® is
also benefiting from larger physical memory. The serial MATLAB execution is hampered by a
lack of physical memory and hence runs inordinately slow. A recurring requirement for
efficient Star-P® programs is keeping large datasets off the front end.

The code below shows what happens upon computing 2^26 random real numbers with
decreasing vector sizes. When k=0, there is no loop, just one big vectorized command. On
the other extreme, when k=25, the code loops 2^25 times computing a small vector of length
2.

Notice that in the beginning, the vectorized code is not efficient. This turns out to be due to
paging overhead, as the matrix exceeds the physical memory of the system on which
MATLAB is running. Later on, the code is inefficient due to loop overhead. Star-P®
overcomes the problem of insufficient memory by enabling you to run on larger-memory HPC
systems. The simple command app = randn(2^26*p,1) parallelizes this computation.

Serial:

>> for k=0:25, tic; for i=1:2^k, a = randn(2^(26-k),1); end; toc; end;
Elapsed time is 1.865770 seconds.
Elapsed time is 1.600310 seconds.
Elapsed time is 1.581707 seconds.
Elapsed time is 1.590823 seconds.
Elapsed time is 1.597639 seconds.
Elapsed time is 1.577038 seconds.
Elapsed time is 1.579628 seconds.
Elapsed time is 1.578954 seconds.
Elapsed time is 1.581229 seconds.
Elapsed time is 1.163945 seconds.
Elapsed time is 1.059308 seconds.
Elapsed time is 1.165907 seconds.
Elapsed time is 1.079797 seconds.
Elapsed time is 1.069463 seconds.
Elapsed time is 1.090218 seconds.
Elapsed time is 1.145205 seconds.
Elapsed time is 1.235547 seconds.
Elapsed time is 1.453363 seconds.
Elapsed time is 1.883642 seconds.
Elapsed time is 2.731986 seconds.
Elapsed time is 4.467244 seconds.
Elapsed time is 7.057231 seconds.
Elapsed time is 13.076593 seconds.
Elapsed time is 25.143928 seconds.
Elapsed time is 44.867566 seconds.
Elapsed time is 88.540178 seconds.
Release 2.7 Star-P® Programming Guide for Use with MATLAB® 83

Tips for Data Parallel Code
Solving Large Problems: Memory Issues

The ability of MATLAB and Star-P® to create and manipulate large matrices easily sometimes
conflicts with the desire to run a problem that consumes a large percentage of the physical
memory on the system in question. Many operators require a copy of the input, or sometimes
temporary array(s) that are the same size as the input, and the memory consumed by those
temporary arrays is not always obvious. Both MATLAB1 and Star-P® will run much more
slowly when their working set exceeds the size of physical memory, though Star-P® has the
advantage that the size of physical memory will be bigger.

If you are running into memory capacity issues, as evidenced by server exceptions being
logged in the ~/.starp/log/latest/starpserver.log, then there may be one or a
few places that are using the most memory. In those places, manually inserting clear
statements for arrays no longer in use, allows the Star-P® garbage collector to free up as
much memory as possible.

As a means of determining where in your application you are requesting a larger amount of
memory than is available for use, then you may consider enabling the
STARP_SOFT_MEM_LIMITS environment variable in the env.sh file on the server, located in
the <path/to/starp/install>/config directory, or placing this environment variable in
the user’s .bashrc file, also on the server. STARP_SOFT_MEM_LIMITS controls whether
“soft-limits” will be enforced (= true) or not (= false). By default, the value of
STARP_SOFT_MEM_LIMITS is set to be false.

When STARP_SOFT_MEM_LIMITS is set to true, server “out-of-memory” exceptions are
returned to the client when one or more server processes exceed their “soft limit” for memory
allocation and a subsequent large array allocation is attempted. The “soft-limits” approach
utilizes UNIX “setrlimit” functionality to limit the user virtual memory to 1/Nth of the
available physical memory on a system’s cache coherent domain that is running N Star-P®
server processes. This artificial limit for memory allocation allows exception handling to be
focused at specific points in the Star-P® server code and should allow users to code for these
exceptions. This limit helps eliminate unexpected slow downs due to oversubscription of
memory.

With STARP_SOFT_MEM_LIMITS set to false, an exception will be thrown on the server
and an error message returned to the client, upon the first call to malloc(), the call for
memory allocation in C, that exceeds the available memory on the server. If
STARP_SOFT_MEM_LIMITS is set to true, then at the first call to malloc() where a
request for memory exceeds this soft-limit, a null pointer is returned, and this event is
recorded for later exception handling on the server. The soft-limit is then disabled, and the
operation is repeated. If at this point, the call to malloc() does not exceed the free memory
available on the system, then your application will continue. If the subsequent call to

1. The MathWorks has a help page devoted to handling memory issues at
http://www.mathworks.com/support/tech-notes/1100/1106.html.
84 Star-P® Programming Guide for Use with MATLAB® Release 2.7

Tips for Task Parallel Code
malloc() exceeds the memory available on the system, then an exception is thrown on the
server, and an error message is returned to the client.

When examining the performance of your code using "soft-limits", you should also be aware
of the Star-P® mallochooks setting on the server. mallochooks is set using ppsetoption. It
provides a thin wrapper around the malloc() operation in C that records the user request in
the case of a failed malloc(). This wrapper also provides that record at a later point to the
Star-P® server for logging purposes. If you choose to set mallochooks to be off, then you
are turning off Star-P®'s mechanism for tracking memory usage on the server. Any out of
memory errors that occur with mallochooks turned off are subject to the memory limits and
error handling provided by your server's operating system.

Further user control for the actual memory “soft” limit is available via the
STARP_MBYTES_PER_PEER environment variable. If defined, this environment variable will
override the default limit which is calculated to be 1/Nth of the host’s actual physical memory.
STARP_MBYTES_PER_PEER can be exceed the default value, but should be used with
caution since it will allow oversubscription of memory, and could thereby cause application
slow down due to swapping.

Tips for Task Parallel Code

Use of Structs and Cell Arrays

MATLAB codes allow for the use of structs and cell arrays as a convenient method of
collecting and organizing related data sets. Within MATLAB, the contents of these containers
can be any valid MATLAB data type, including matrices, strings, and other structures or cell
arrays. Depending on the code being developed, these arrays may be gigantic arrays of
structures or cells.

Star-P® currently allows the use of structures locally inside of functions called by “ppeval”.
Structs and cell arrays on the client side continue to work within the MATLAB environment.
You can assign distributed data to members of a struct or cell array, as well as manipulate
distributed data that is a member of a struct or cell array. However, current versions of
Star-P® lack the ability to pass entire structures or cell arrays from client to server. This
means that you cannot pass a top-level struct or cell array name as an argument to
“ppeval”, nor can you distribute an entire struct using ppback. Here are some examples:

%Legal Star-P® operations on structs

a.scalar = 57.36;
a.foo = ppback([1:100]);
a.left = rand(100*p,100);
a.right = rand(100,100*p);
myprod = a.left*a.right;
bar = ppeval('somefunc', split(a.foo), split(a.left,1),split(a.right,2));
Release 2.7 Star-P® Programming Guide for Use with MATLAB® 85

Tips for Task Parallel Code
%Illegal Star-P® operations -- can’t pass struct using top-level name
b.this = rand(10,10);
b.that = rand(10,10);
baz = ppeval('someotherfunc',b);
bpp = ppback(b);

MATLAB structs or cell arrays can be arbitrarily more complex than shown here (for example,
structs containing cell arrays containing structs among other possibilities). As a general rule,
if your data is held in a struct or cell array, and you need to pass a part of that data to the
server, then pass only the structure members or contents of a cell array element that contain
distributable matrix data or string variables.

When creating replacement variables for passing this data into or out of a ppeval call, give
your replacement matrices names evocative of your original struct or cell array to help you
keep track of what your code is doing.

Vectorize for Loops Inside of ppeval Calls

For similar reasons that vectorization is key to achieving optimal performance with data
parallel codes, vectorization is also extremely important for good performance of task parallel
codes. Each iteration of a function in task parallel takes place on an individual processor on
the server and still involves the use of an interpreter. Consequently, the benefits of
vectorization that can be achieved in serial MATLAB code are also available with task parallel
MATLAB code with Star-P®.

The following example shows the effort needed and gains achieved by vectorization inside a
“ppeval” call:

%Top.m -- Top level fcn invokes two different versions of sum to check speeds.

%Main function. Assume computation involves processing of 3D array.
n = 1000;
yarr = rand(3,n,8);
zarr = rand(3,n,8);

tic;
x_looping = ppeval('fcn_looping',n,split(yarr,3),split(zarr,3));
toc

tic;
x_vectorized = ppeval('fcn_vectorized',n,split(yarr),split(zarr,3));
toc

function x = fcn_looping(n,y,z)
%===== Unvectorized version -- Bad! =====
for i = 1:n
if z(1,i) >= 0.5
x(i) = y(1,i)*z(1,i) + y(2,i)*z(2,i) + y(3,i)*z(3,i);
else
86 Star-P® Programming Guide for Use with MATLAB® Release 2.7

Tips for Task Parallel Code
x(i) = y(1,i)/z(1,i) + y(2,i)/z(2,i) + y(3,i)/z(3,i);
end
end

function x = fcn_vectorized(n,y,z)
%===== Vectorized version -- Good! =====
indx = z(1,:) >= 0.5; %Replace if with a logical expression
x(indx) = sum(y(:,indx).*z(:,indx),1);
indx = indx == 0; %use complement of indx for else case
x(indx) = sum(y(:,indx)./z(:,indx),1);

The performance gains achieved by this vectorization inside of a ppeval are shown in the
following table as a function for the main loop index.

Performance Note on Iteration Timing

Each ppeval iteration has overhead cost associated with it on the order of 10s of
microseconds. This means that if iterations of your for loop take less time than this
overhead cost no performance gains will be achieved by using ppeval directly over the
entire set of iterations. By blocking iterations within a function call, you can:

1. reduce the number of iterations performed by ppeval

2. increase the time per ppeval iteration

3. reduce the overall time necessary to perform all target function iterations.

To illustrate this point, let us consider a function foo contained in a file foo.m. Let us also
assume that evaluating a single iteration of foo takes less than 10-20 microseconds.

Performing N iterations of foo serially would take the following form:

% Performing all iterations serially
% on a function foo that takes two scalars
m = 6;
N = 2^m;
x = rand(N,1);
y = randn(N,1);
z = zeros(N,1);

Loop Iterator Looping
Execution
Time (sec)

Vectorized
Execution
Time (sec)

Speed-up
Factor

100 0.798259 0.751317 1.06

1000 1.444807 0.815917 1.77

10000 9.126191 1.231624 7.41

100000 351.754691 5.797857 60
Release 2.7 Star-P® Programming Guide for Use with MATLAB® 87

Tips for Task Parallel Code
for i=1:N
 z(i) = foo(x(i),y(i));
end
% file foo.m
function z = foo(x,y);
z = x+y;

Performing all N iterations in a single ppeval would then be:

% Performing all iterations in a single ppeval
xpp = ppback(x);
ypp = ppback(y);
zpp = ppeval('foo',xpp,ypp);

Now in the assumed case where foo takes less than 10-20 microseconds to execute, it is
recommended that you rearrange the loop body to create a wrapper function, say
foo_wrapper, that executes only a portion of your iterations serially. Then, this function
foo_wrapper would be passed to ppeval.

% from file foo_wrapper.m
function z = foo_wrapper(x,y,N);
z = zeros(N,1);
for i=1:N
 z(i) = foo(x(i),y(i));
end
%Transformed Serial operations
m = 6;
N = (2^m/np);
x = rand(N,np);
y = randn(N,np);
z = zeros(N,np);
for j = 1:np
 z(:,j) = foo_wrapper(x(:,j),y(:,j));
end
%Implementation in parallel with effective starp.ppeval operations
xpp = ppback(x);
ypp = ppback(y);
zpp = ppeval(foo_wrapper,xpp,ypp,N);
z = ppfront(zpp(:));

This example assumes that the total number of iterations desired for foo is a multiple of the
number of processors. When this is not the case, the logic of how you choose to break up
your for loops needs to be changed. In addition, the optimal method for determining the
number of iterations that should be performed inside foo_wrapper, which is called by
ppeval, is something that you will need to determine through experimentation based on the
following quantities:

• The amount of time necessary to call a single iteration of foo.

• The total number of iterations of foo needed.

• The number of processors available.
88 Star-P® Programming Guide for Use with MATLAB® Release 2.7

Using External Libraries
Using External Libraries

In addition to the functions available within MATLAB®, Star-P® allows for the integration of
external functions for your own libraries or third party vendor libraries through the use of the
ppinvoke, ppeval, and ppevalsplit, pploadpackage, and ppunloadpackage
functions that are part of Star-P® SDK interface. More information on the Star-P® SDK can be
found in the “Star-P® Software Development Kit Reference and Tutorial”. External functions
can also be run in task parallel within ppeval through the use of the MATLAB system
command. For more information on calling external functions using the system command,
see "Calling Non-”M” Functions from within ppeval".

Although most Star-P® functions are insensitive to matrix distribution, many (or most) third
party libraries are not. Consequently, if your MATLAB® program interfaces to external
programs or libraries that are sensitive to distribution through the Star-P® SDK, then you
must carefully consider how you distribute your matrices. In this situation you may ask, “how
do I know whether to call the function with row distributed or column distributed input
matrices?” Unless the third party programs explicitly state their desired distribution, then the
answer is: experiment. Surround the function with “tic/toc”, “pptic/pptoc” and send it
random matrices distributed in all ways possible. Then scale the matrix sizes up and see
which distributions (if any) offer faster execution time, or which distributions break first when
the matrix size becomes gigantic.

Integer Arithmetic in Star-P® Compared with MATLAB®

In MATLAB®, all operations on integer types “saturate.” This means values greater than
intmax of that integer class are set to intmax and values below intmin of that integer
class are set to intmin.

In Star-P® M, all operations on integers “overflow.” This behavior is more common in
languages and environments that support integer operations such as C, C++, C#, Java and
NumPy. This means when a value is greater than intmax for a particular integer class the
result will cycle back from intmin of that class. Similarly, when a value is less than intmin
of an integer class, the result will cycle starting from intmax.

Accuracy of Star-P® Routines

The underlying numerical libraries in Star-P® such as ScaLAPACK, FFTW and SPRNG are of
high accuracy and comply with the IEEE standards. However, in many cases the results from
Star-P® may differ from that reported by MATLAB® for a number of reasons:

1. In the most common case, the answers may simply be non-unique. For example, the
eigenvalues from the single-return form of eig might be returned in a different order
Release 2.7 Star-P® Programming Guide for Use with MATLAB® 89

ISC_StarP_SDK_Tutorial_R26.pdf

Configuring ppsetoption for High Performance
from MATLAB® or the eigenvectors might be scaled differently. Similarly, the outputs
from svd (singular value decomposition) and its derivatives such as null and orth,
hess (reduction to the upper-Hessenberg form) and schur (reduction to the Schur
form) are non-unique and therefore not guaranteed to match the corresponding outputs
from MATLAB®. Instead, you must verify that the results satisfy the properties of the
underlying decomposition. For instance, if you were to run
[Upp,Spp,Vpp]=svd(App) for App being a ddense object, the outputs Upp, Spp, and
Vpp are valid if Upp and Vpp are unitary and norm(Upp*Spp*Vpp - App) is small.

2. Another reason numerical results from Star-P® might not correspond to those from
MATLAB has to do with the influence of small round-off errors. For example, it is
well-known that even addition is not associative in the presence of rounding errors: the
result of (a + b) + c can differ from a + (b + c).

3. When the underlying problem is ill-conditioned or singular, it is very likely that the
results from Star-P® will not match MATLAB. For instance, when a matrix A is singular
to working precision, inv(A) returns inf(size(A)) in MATLAB, but not in Star-P®.
When such cases are encountered, Star-P® does its best to return a descriptive
warning message.

4. Differences between MATLAB and Star-P® numerical results might arise for extremely
large or extremely small input values.

5. Finally, differences between the numerical results in Star-P® and MATLAB might result
from software issues. If you suspect that the Star-P® result is incorrect, please contact
us at support@interactivesupercomputing.com.

Configuring ppsetoption for High Performance

The following items should be considered when the performance of your Star-P® application
is critical.

1. By default, each call to the Star-P® server causes an entry in a log file on the server
system. Some performance benefits can be achieved by disabling logging in the server,
via the following command at the MATLAB® prompt:

ppsetoption('log','off')

Through increasing the frequency of calls, by setting ppgcFreq to a number smaller
than 30, the server can use less memory. This could be useful when executing server
calls which allocate a lot of temporaries over a few server calls.

2. On SGI Altix systems, the Star-P® server will yield CPU usage after each command
completes. Significantly improved performance is available at the cost of continuing to
use CPU time in a loop even when Star-P® is idle. This increased performance can be
obtained via the following command at the MATLAB prompt:
90 Star-P® Programming Guide for Use with MATLAB® Release 2.7

Performance Tuning and Monitoring
ppsetoption('YieldCPU','off')

3. By default, the Star-P® server maintains a count of how much memory it is consuming
and how much memory is being used on the system. This enables it to more gracefully
handle situations that arise when the server machine is running low on available
memory. There is a minor performance cost associated with this functionality, because
it requires a small amount of extra work to be done with each call to malloc() inside
the server. This feature can be disabled, providing improved performance, via the
following command:

ppsetoption('mallochooks','off')

Star-P® TPE provides the option of using various versions of Octave or compiled C codes as
task parallel computational engines using the 'TaskParallelEngine' option as an
argument in ppsetoption.

For information on using ppsetoption to change your task parallel engine, see "Choosing
Your Task Parallel Engine (TPE)".

Performance Tuning and Monitoring

Diagnostics and Performance

Star-P® provides several diagnostic commands that help determine the following:

• Which variables are distributed,

• How much time is spent on communication between the client and the server.

• How much time is spent on each function call inside the server.

Each of these diagnostics can help identify bottlenecks in the code and improve
performance. The diagnostic arguments are ppwhos, pptic/toc, ppeval_tic/toc, and
ppprofile.

Client/Server Performance Monitoring

Coarse Timing with pptic and pptoc
Communication between the client and server can be measured by use of the pptic and
pptoc commands, which are modeled after the MATLAB® tic and toc commands, but
instead of providing wall-clock time between the two calls, they provide the number of
client-server messages and bytes sent during the interval.

>> app = randn(1000*p);
>> tic; bpp = fft(app), toc;
bpp =
 ddense object: 1000-by-1000p
Release 2.7 Star-P® Programming Guide for Use with MATLAB® 91

Performance Tuning and Monitoring
Elapsed time is 0.022127 seconds.
>> pptic; bpp = fft(app), pptoc;
bpp =
 ddense object: 1000-by-1000p
Client/server communication report:
 Sent by server: 1 messages, 7.200e+01 bytes
 Received by server: 1 messages, 8.800e+01 bytes
 Total communication time: 5.341e-05 seconds
Server processing report:
 Duration of calculation on server (wall clock time): 1.802e-02s
 #ppchangedist calls: 0
--
Total time: 3.410e-02 seconds

And of course the two can be combined to provide information about transfer rates.

>> tic; pptic; bpp = fft(app), pptoc; toc;
bpp =
 ddense object: 1000-by-1000p
Client/server communication report:
 Sent by server: 1 messages, 7.200e+01 bytes
 Received by server: 1 messages, 8.800e+01 bytes
 Total communication time: 5.198e-05 seconds
Server processing report:
 Duration of calculation on server (wall clock time): 1.881e-02s
 #ppchangedist calls: 0
--
Total time: 3.241e-02 seconds
Elapsed time is 0.032588 seconds.

The pptic and pptoc commands can be used on various amounts of code, to focus on the
source of a suspected performance problem involving communications between the client
and the server. For instance, when you explicitly move data between the client and server via
ppfront or ppback, you will expect to see a large number of bytes moved.

>> app = rand(1000*p);
>> pptic; ma = ppfront(app); pptoc;
Client/server communication report:
 Sent by server: 1 messages, 8.000e+06 bytes
 Received by server: 1 messages, 2.400e+01 bytes
 Total communication time: 7.060e-01 seconds
Server processing report:
 Duration of calculation on server (wall clock time): 1.566e-02s
 #ppchangedist calls: 0
--
Total time: 7.415e-01 seconds
>> ppwhos
Your variables are:
 Name Size Bytes Class
 app 1000x1000p 8000000 ddense array
 ma 1000x1000 8000000 double array
92 Star-P® Programming Guide for Use with MATLAB® Release 2.7

Performance Tuning and Monitoring
Grand total is 2000000 elements using 16000000 bytes
MATLAB has a total of 1000000 elements using 8000000 bytes

Star-P® server has a total of 1000000 elements using 8000000 bytes

But there might be places where implicit data movement occurs. For example, below we see
an example of a distributed matrix being multiplied by a local, client-side matrix. In performing
this operation, the matrix b must be shipped to the server to perform this operation.

>> app = rand(1000*p);
>> b = rand(1000);
>> pptic; cpp = app * b; pptoc;
Client/server communication report:
 Sent by server: 2 messages, 1.480e+02 bytes
 Received by server: 2 messages, 8.000e+06 bytes
 Total communication time: 6.799e-01 seconds
Server processing report:
 Duration of calculation on server (wall clock time): 1.403e-01s
 #ppchangedist calls: 0
--
Total time: 8.587e-01 seconds

Other operations may produce different amounts of communication depending upon how
they are called. For example, the single-return case of the find function may move only a
few hundreds or thousands of bytes between the client and the server, but when calling the
find operation on a distributed variable with three returns, the row indices, column indices and
array values are all moved from the server to the client. Depending on the size of the
distributed input, this could be a very large amount of data that is transferred.

An excessive number of client-server messages (as opposed to bytes transferred) can also
hurt performance. For instance, the values of an array could be created element-by-element,
as in the for loop below, or it could be created by a single array-level construct as below.
The first construct calls the Star-P® server for each element of the array, meaning almost all
the time will be spent communicating between the client and the server, rather than letting the
server spend time working on its large data.

>> app = rand(100*p,1);
>> bpp = rand(100*p,1);
>> tic; pptic;
>> for i = 1:double(size(app,1)), cpp(i,1) = app(i,1)*2 + bpp(i,1)*7.4; end
>> pptoc; toc;
Client/server communication report:
 Sent by server: 200 messages, 8.800e+03 bytes
 Received by server: 200 messages, 1.281e+04 bytes
 Total communication time: 3.047e-03 seconds
Server processing report:
 Duration of calculation on server (wall clock time): 5.492e-01s
 #ppchangedist calls: 0
--
Total time: 8.171e-01 seconds
Elapsed time is 0.817286 seconds.
Release 2.7 Star-P® Programming Guide for Use with MATLAB® 93

Performance Tuning and Monitoring
The second construct is drastically better because it allows the Star-P® server to be called
only a few times to operate on the same amount of data.

>> app = rand(100*p,1);
>> bpp = rand(100*p,1);
>> tic; pptic;
>> cpp(:,1) = app(:,1)*2 + bpp(:,1)*7.4;
>> pptoc; toc;
Client/server communication report:
 Sent by server: 7 messages, 5.080e+02 bytes
 Received by server: 7 messages, 5.680e+02 bytes
 Total communication time: 1.159e-04 seconds
Server processing report:
 Duration of calculation on server (wall clock time): 4.857e-02s
 #ppchangedist calls: 0
--
Total time: 9.490e-02 seconds
Elapsed time is 0.095106 seconds.

The execution of this script bears out the differences in messages sent/received, with the first
method sending 200 times more messages than the second. What is even worse for the
element-wise approach, the performance difference will grow as the size of the data grows.

Summary and Per-Server-Call Timings with ppprofile
The different subfunctions of the ppprofile command can be combined to give you lots of
information about where the time is being spent in your Star-P® program. There are different
types of information that are available.

Perhaps the most common usage of ppprofile is to get a report on a section of code, as
follows.

>> app = rand(1000*p);
>> ppprofile on
>> doffts(app)
>> ppprofile report
function calls time avg time %calls %time
ppbase_setoption 1 0.079922 0.079922 11.1111 45.9766
starp_fft1 2 0.046222 0.023111 22.2222 26.59
ppdense_max 2 0.016304 0.008152 22.2222 9.3792
ppdense_unary_op 1 0.01081 0.01081 11.1111 6.2186
ppdense_binary_op 1 0.010652 0.010652 11.1111 6.1278
ppdense_viewelement 2 0.009922 0.004961 22.2222 5.7078
Total 9 0.17383 0.019315

The report prints out all server functions that are used between the calls to ppprofile on
and ppprofile report, sorted by the percentage of the execution time spent in that
function. For this example, it shows you that 34% of the time is spent executing in the server
routine ppfftw_fft, which calls the FFT routine in the FFTW parallel library. This report
94 Star-P® Programming Guide for Use with MATLAB® Release 2.7

Performance Tuning and Monitoring
also tells you how many calls were made to each server routine, and the average time per
call.

Information from this report can be used to identify routines that your program is calling more
often than necessary, or that are not yet implemented optimally. An example of the former is
given below, by a script which does a matrix multiplication in a non-vectorized manner,
compared to a vectorized routine. The script has the following contents:

>> type domxmp
function c = domxmp(a,b)
% Do matrix multiply by various methods (bad to good perf)
%
% First, do it in an unvectorized style.
[ma, na] = size(a);
[mb, nb] = size(b);
ppprofile clear, ppprofile on;
tic;
c = zeros(ma,nb)
for i = 1:double(ma)
 for j = 1:double(nb)
 c(i,j) = dot(a(i,:),b(:,j));
 end
end
fprintf('MxM via dot takes ');
toc;
ppprofile report
% Second, do it in a vectorized style.
ppprofile clear, ppprofile on;
tic;
c = a*b;
fprintf('\nMxM via dgemm takes ');
toc;
ppprofile report

With two input arrays sized as 20-by-20p, you get the following output:

>> app = rand(20*p);
>> bpp = rand(20*p);
>> cpp = domxmp(app,bpp);
cpp =
 ddense object: 20-by-20p
MxM via dot takes Elapsed time is 13.243921 seconds.
function calls time avg time %calls %time
ppdense_setelement 400 3.1333 0.0078333 24.9688 37.7747
ppdense_subsref_col 400 1.7981 0.0044952 24.9688 21.677
ppdense_subsref_row 400 1.7178 0.0042944 24.9688 20.709
ppdense_dotv 400 1.6218 0.0040545 24.9688 19.5519
ppbase_setoption 1 0.019089 0.019089 0.062422 0.23013
ppdense_zeros 1 0.004753 0.004753 0.062422 0.057301
Total 1602 8.2948 0.0051778
MxM via dgemm takes Elapsed time is 0.007292 seconds.
Release 2.7 Star-P® Programming Guide for Use with MATLAB® 95

Performance Tuning and Monitoring
function calls time avg time %calls %time
pppblas_gemm 1 0.003829 0.003829 50 54.4588
ppbase_setoption 1 0.003202 0.003202 50 45.5412
Total 2 0.007031 0.0035155

You can see that the first report requires over 2,000 server calls, while the second requires
only one. This accounts for the drastic performance distance between the two styles of
accomplishing this same computational task.

If you want to delve more deeply and understand the sequential order of system calls, or get
more detailed info about each server call, you can use the ppprofile display option.

>> app = rand(1000*p);
>> ppprofile off
>> ppprofile on, ppprofile display
>> doffts(app)
starp_fft1 time=0.019604
starp_fft1 time=0.014379
ppdense_binary_op time=0.011343
ppdense_unary_op time=0.01186
ppdense_max time=0.009945
ppdense_max ppdense_viewelement time=0.003043
ppdense_viewelement time=0.006743
time=0.00759
>> ppprofile off

With this option, the information comes out interspersed with the usual MATLAB console
output, so you can see which MATLAB or Star-P® commands are invoking which server calls.
This can help you identify situations where Star-P® is doing something you didn’t expect, and
possibly creating a performance issue.

Another level of information is available with the ppprofile on -detail full option
coupled with the ppprofile display option.

>> ppprofile off
>> ppprofile on -detail full
>> ppprofile display
>> doffts
echo on
bpp = fft(app);
ppfftw_fft time=0.11616 stime=0 chdist=0
ppbase_gc_many time=3.1397 stime=0.078125 chdist=0
cpp = ifft(bpp);
ppfftw_fft time=0.33294 stime=0.10938 chdist=0
diff = max(max(abs(cpp-app)))
ppdense_elminus time=0.16202 stime=0.046875 chdist=0
ppdense_abs time=0.20006 stime=0.09375 chdist=0
ppdense_max time=0.12719 stime=0.015625 chdist=0
ppbase_removeMatrix time=0.11105 stime=0 chdist=0
ppdense_max time=0.12176 stime=0 chdist=2
ppdense_viewelement time=0.11217 stime=0 chdist=0
96 Star-P® Programming Guide for Use with MATLAB® Release 2.7

Performance Tuning and Monitoring
ppbase_gc_many time=0.1127 stime=0 chdist=0
ppdense_viewelement time=0.11225 stime=0 chdist=0
diff =
7.7963e-16

As you can see, the per-server-call information now includes not only the time spent
executing on the server (“stime”) but also the number of times that the distribution of an
object was changed in the execution of a function (“chdist”). Changes of distribution are
necessary to provide good usability (think of the instance where you might do element-wise
addition on 2 arrays, one of which is row-distributed and one of which is column-distributed),
but changing the distribution also involves communication among the processors of the
Star-P® server, which can be a bottleneck if done too often. In this example, the max function
is doing 2 changes of distribution.

ppeval_tic/toc:

Star-P® also provides a set of timer functions specific to the ppeval command:
ppeval_tic/ppeval_toc. They provide information on the complete ppeval process by
breaking down the time spent in each step necessary to perform a ppeval call:

>> ppeval_tic();
>> ypp = ppeval('inv',rand(10,10,1000*p));
>> ppeval_toc(0)
ans =
 TotalCalls: 1
 ServerInit: 6.1989e-06
 ServerUnpack: 5.0068e-06
 ServerFunctionGen: 0.0019
 ServerCallSetup: 1.9908e-04
 ServerOctaveExec: 0.0493
 ServerDataCollect: 2.0599e-04
 ServerTotalTime: 0.0516
 ClientArgScan: 0.0050
 ClientDepFun: 0.0028
 ClientEmode: 0.0549
 ClientReturnValues: 0.0096
 ClientTotalTime: 0.0723
 TPELogFileLength: 84
 InputElementsPP: [12503 0]
 OutputElementsPP: [12500 0]
 TPEInnerExec: 0
 TPEOuterExec: 0.0478
 TPESliceCount: 125

ppeval_tic/toc is useful to determine how much time is spent on actual calculation
(ServerOctaveExec) and how much on server (ServerTotalTime –
ServerTPEExec) and client (ClientTotalTime) overhead. The argument to
ppeval_toc determines is the maximum time of all processors (0), the minimum time of all
processors (1), or the mean time of all processors (2) is returned.
Release 2.7 Star-P® Programming Guide for Use with MATLAB® 97

Performance Tuning and Monitoring
Maximizing Performance

Maximizing performance of Star-P® breaks down to the following guidelines:
1. minimize client/server communication,
2. keep data movement between the client and server to a minimum, and
3. keep distributions of server variables aligned.

The first point is most important for data parallel computation and can be achieved by
vectorizing your code, meaning, that instead of using looping and control structures, you use
higher level functions to perform your calculations. Vectorization takes control of the
execution away from MATLAB (e.g., MATLAB is no longer executing the for loop line by
line) and hands it over to optimized parallel libraries on the server. Not only will vectorized
code run faster with Star-P®, it will also run faster with MATLAB.

The second point simply reflects the fact that transferring data from the client to the server is
the slowest link in the Star-P® system. Any operation that involves a distributed variable and
a normal MATLAB variable will be executed on the server, and hence, includes transferring
the MATLAB variable to the server so that the server has access to it. When the MATLAB
variables are scalars, this does not impact the execution time, but when the variables
become large it does impact the time it takes to perform the operation.

Note that when combining a distributed and MATLAB variable inside a loop, the MATLAB
variable will be sent over to the server for each iteration of the loop.

The third point reflects the fact that changes in the distribution type, say from row to column
distributed, costs a small amount of time. This time is a function of the interconnect between
the processors and will be larger for slower interconnects. In general, avoiding distribution
changes is straightforward and is easily achieved by aligning the distribution types of all
variables, i.e. all row distributed or all column distributed.

Maintaining Awareness of Communication Dependencies

Communication between the Star-P® Client and Server

Distributed objects in Star-P® reside on the server system, which is usually a different
physical machine from the system where the MATLAB client is running. Thus, whenever data
is moved between the client and the server, it involves interprocessor communication, usually
across a typical TCP/IP network (Gigabit Ethernet, for instance). While this connection
enables the power of the Star-P® server, excessive data transfer between the client and
server can cause performance degradation, and thus the default behavior for Star-P® is to
leave large data on the server. One typical programming style is to move any needed data to
the server at the beginning of the program (via ppback, ppload, etc.), operate on it
repeatedly on the server, then save any necessary results at the end of the program (via
ppfront, ppsave, etc.).
98 Star-P® Programming Guide for Use with MATLAB® Release 2.7

Performance Tuning and Monitoring
However, there are times when you want to move the data between the client and the server.
This communication can be explicit.

>> load imagedata a
>> app = ppback(a);
>> bpp = app.*app;
>> b = ppfront(bpp);
>> ppwhos
Your variables are:
 Name Size Bytes Class
 a 1000x1000 8000000 double array
 app 1000x1000p 8000000 ddense array
 b 1000x1000 8000000 double array
 bpp 1000x1000p 8000000 ddense array
Grand total is 4000000 elements using 32000000 bytes
MATLAB has a total of 2000000 elements using 16000000 bytes

Star-P® server has a total of 2000000 elements using 16000000 bytes

The load command loads data from a file into MATLAB variable(s). The ppback command
moves the data from the client working space to the Star-P® working space, in this case as a
ddense array. Similarly, the ppfront command moves data from the Star-P® server working
space back to the MATLAB client working space.

>> bpp = rand(1000*p);
>> d = max(max(bpp));
>> e = norm(bpp);
>> ppwhos
Your variables are:
 Name Size Bytes Class
 bpp 1000x1000p 8000000 ddense array
 d 1x1 8 double array
 e 1x1 8 double array
Grand total is 1000002 elements using 8000016 bytes
MATLAB has a total of 2 elements using 16 bytes

Star-P® server has a total of 1000000 elements using 8000000 bytes

When accessing data from disk, it may be faster to load it directly as distributed array(s)
rather than loading it into the client and then moving it via ppback (and similarly to save it
directly as distributed arrays). The ppload/ppsave commands are the distributed versions
of the load/save commands. For information on ppload and ppsave, see "The ppload
and ppsave Star-P® Commands".

Implicit Communication

The communication between the client and the server can also be implicit. The most frequent
cases of this communication pattern are the call(s) that are made to the Star-P® server for
operations on distributed data. While attention has been paid to optimizing these calls,
making too many of them will slow down your program. The best approach to minimizing the
Release 2.7 Star-P® Programming Guide for Use with MATLAB® 99

Performance Tuning and Monitoring

number of calls is to operate on whole arrays and minimize the use of control structures such
as for and while, with operators that match what you want to achieve.

Another type of implicit communication is done via reduction operations, which reduce the
dimensionality of arrays, often to a single data element, or other operators which produce
only a scalar.

>> d = max(max(bpp));
>> e = norm(bpp);
>> ppwhos
Your variables are:
 Name Size Bytes Class
 bpp 100x100p 80000 ddense array
 d 1x1 8 double array
 e 1x1 8 double array

One of the motivations behind the design of Star-P® was to allow larger problems to be
tackled than was possible on a single-processor MATLAB session. Because these problems
often involve large data (i.e., too big to fit on the MATLAB client), and because of the
possibility of performance issues mentioned above, Star-P®’s default behavior is to avoid
moving data between the client and the server. Indeed, given the memory sizes of parallel
servers compared to client systems (usually desktops or laptops), in general it will be
impractical to move large arrays from the server to the client. The exception to this rule arises
when operations on the server result in scalar output, in which case the scalar value will
automatically be brought to the client.

Because of this bias against unnecessary client-server communication, some Star-P®
behavior is different from MATLAB. For instance, if a command ends without a final
semicolon, MATLAB will print out the resulting array.

>> f = rand(8,8)
f =
 0.4838 0.1520 0.1996 0.7267 0.4563 0.7669 0.3624 0.7185
 0.5923 0.5584 0.1937 0.4047 0.2911 0.2298 0.2460 0.8987
 0.7036 0.2819 0.4815 0.3219 0.0787 0.4983 0.9179 0.8907
 0.8828 0.1345 0.1551 0.3135 0.4714 0.7376 0.1811 0.8055
 0.1802 0.1512 0.2509 0.2147 0.9806 0.0915 0.6026 0.8420
 0.6950 0.4017 0.5268 0.0104 0.9427 0.0030 0.1507 0.3435
 0.9811 0.0213 0.4433 0.7595 0.8324 0.7831 0.4493 0.2497
 0.1848 0.7306 0.0034 0.5078 0.7174 0.1684 0.6500 0.8098
 0.0904 0.5250 0.2795 0.5770 0.5986 0.0795 0.3651 0.4867
 0.4757 0.5727 0.9461 0.6291 0.4177 0.8044 0.2065 0.3597

While this makes good sense for small data sizes, printing out the data sizes possible with
Star-P® distributed objects, which often contain hundreds of millions to trillions of elements,
would not be useful. Thus the Star-P® behavior for a command lacking a trailing semicolon is
to print out the size of the resulting object.

>> fpp = rand(8*p,8)
100 Star-P® Programming Guide for Use with MATLAB® Release 2.7

Performance Tuning and Monitoring
fpp =
 ddense object: 8p-by-8

If you want to see the contents of an array, or a portion of an array, you can display a single
element in the obvious way, as follows:

>> fpp(1,4)
ans =
 0.2433

Alternately, you can move a portion of the array to the client:

>> fsub = ppfront(fpp(1:4,:));
>> ppwhos
Your variables are:
 Name Size Bytes Class
 ans 1x1 8 double array
 fpp 8px8 512 ddense array
 fsub 4x8 256 double array

Grand total is 97 elements using 776 bytes
MATLAB has a total of 33 elements using 264 bytes
Star-P server has a total of 64 elements using 512 bytes

Note: When you call ppfront and leave off the final semicolon, MATLAB will print out
the whole contents of the array.

Note: Communication can happen implicitly as described in "Mixing Local and
Distributed Data".

Communication Among the Processors in the Parallel Server

During operations on the parallel server, communication among processors can happen for a
variety of reasons. Users who are focused on fast application development time can probably
ignore distribution and communication of data, but those wanting the best performance will
want to pay attention to them.

Some operations can be accomplished with no interprocessor communication on the server.
For instance, if two arrays are created with the same layout (see details of layouts in "Types
of Distributions"), element-wise operators can be done with no communication, as shown in
the following example.

>> app = rand(100*p,100);
>> bpp = rand(100*p,100);
>> cpp = app + bpp;
>> dpp = app .* bpp;
>> ppwhos
Your variables are:
 Name Size Bytes Class
 app 100px100 80000 ddense array
 bpp 100px100 80000 ddense array
Release 2.7 Star-P® Programming Guide for Use with MATLAB® 101

Performance Tuning and Monitoring
 cpp 100px100 80000 ddense array
 dpp 100px100 80000 ddense array
Grand total is 40000 elements using 320000 bytes
MATLAB has a total of 0 elements using 0 bytes

Star-P® server has a total of 40000 elements using 320000 bytes

These element-wise operators operate on just one element from each array, and if those
elements happen to be on the same processor, no communication occurs. If the elements
happen not to be on the same processor, the element-wise operators can cause
communication. In the example below, app and epp are distributed differently, so internally
Star-P® redistributes epp to the same distribution as app before doing the element-wise
operations.

>> app = rand(100*p,100);
>> epp = rand(100,100*p);
>> fpp = app .* epp;
>> ppwhos
Your variables are:
 Name Size Bytes Class
 app 100px100 80000 ddense array
 epp 100x100p 80000 ddense array
 fpp 100px100 80000 ddense array
Grand total is 30000 elements using 240000 bytes
MATLAB has a total of 0 elements using 0 bytes

Star-P® server has a total of 30000 elements using 240000 bytes

Often redistribution cannot be avoided, but for arrays which will be operated on together, it is
usually best to give them the same distribution.

Any operator that rearranges data (for example, sort, transpose, reshape, permute,
horzcat, circshift, extraction of a submatrix) will typically involve communication on a
parallel system. Other operators by definition include communication when executed on
distributed arrays. For example, multiplication of two matrices requires, for each row and
column, multiplication of each element of the row by the corresponding element of the
column and then taking the summation of those results. Similarly, a multi-dimensional FFT is
often implemented by executing the FFT in one dimension, transposing the data, and then
executing the FFT in another dimension. Some operators require communication, in the
general case, because of the layout of data in Star-P®. For instance, the find operator returns
a distributed dense array (column vector) of the nonzero elements in a distributed array.
Column vectors in Star-P® contain an equal number of elements per processor for as many
processors as can be fully filled, with any remainder in the high-numbered processors. Thus
the find operator must take the result values and densely pack them into the result array. In
general, this requires interprocessor communication. For the same reason, creating a
submatrix by indexing into a distributed array also requires communication.

As a programmer, you may want to be aware of the communication implicit in various
operators, but only in rare cases would the communication patterns of a well-vectorized code
make you choose one operator over another. The performance cost of interprocessor
communication will be heavily application dependent, and also dependent on the strength of
102 Star-P® Programming Guide for Use with MATLAB® Release 2.7

Performance Tuning and Monitoring
the interconnect of the parallel server. For high communication problems, a tightly integrated
system, such as an SGI Altix system, will provide the best performance.

Enhanced Performance Profiling in Star-P®

If you are using Star-P®, it is probably because you want to achieve maximum performance
from your MATLAB program. That is, you are interested in making your program run as
quickly as possible, while still returning correct results. Since Star-P® is a client/server
program, correctly distributing your processing tasks between client and server is
instrumental in obtaining best performance. Also, calling the right functions to achieve your
goals is important to obtaining good run times.

Knowing which functions are invoked, where they are running, how many times they are
called, and how long they run before completion is information you can use while optimizing
your program for best performance. Therefore, Star-P® provides several profiling facilities to
help you wring maximum performance out of your program. These facilities include:

• MATLAB's profile and Star-P®'s ppprofile, which provide run-time profiling of
your program's execution. This information includes statistics about execution time,
number and name of sub-function calls, and other execution tracing information.
“Profile” tracks program activity on the client, and “ppprofile” tracks activity on the
server.

• MATLAB's tic/toc and Star-P®'s pptic/pptoc, which report the time elapsed
on the client (tic/to) and the server (pptic/pptoc) between the tic/pptic
call and the toc/pptoc call.

• Star-P®'s unique ppperf function. ppperf provides fine-grained profiling of
compute activity on both the client and the server together. It pays close attention
to the time required to perform computational tasks, and it also tracks
communication between client and server over the network. The vision behind
ppperf is to provide you a top-level view of what your program is doing as it runs
your calculation. Using the information provided by ppperf, you can identify
program choke points, isolate excessive client/server communication, see what
functions are invoked on both client and server, and determine how long each
function takes to finish. This information can be invaluable when debugging or
optimizing a Star-P® application.

The rest of this section describes the use of ppperf in investigating your code.

Using ppperf

Usage of Star-P®'s profiling tool is loosely based upon MATLAB's profile functionality. If
you are used to code profiling using MATLAB's profile, then Star-P®'s ppperf will feel
comfortable to you.
Release 2.7 Star-P® Programming Guide for Use with MATLAB® 103

Performance Tuning and Monitoring
To use ppperf, you should first have a mental model of what ppperf is doing. Figure 5-1 is
a simplified diagram showing the major software components at work when you execute a
function called myfunc on the parallel supercomputer. You, the user, interacts with MATLAB
on your local PC. When you execute myfunc:

• MATLAB passes control to the Star-P® client software, which in turn sends it to the
Star-P® server software, which evaluates your function using the appropriate
numerical library.

• Then, the Star-P® server passes the result to the Star-P® client, which sends it up
to MATLAB, which displays the result to you in your MATLAB session. Meanwhile,
performance data is recorded at several points within the system.

Figure 5-1 Major Software Components At Work

Figure 5-1 is a conceptual picture of what happens when you invoke myfunc() in the
MATLAB client. Star-P® software passes the function call down to the appropriate numerical
library on the server, and passes the returned results back to the MATLAB session (thick
dotted black line in Figure 5-1).
104 Star-P® Programming Guide for Use with MATLAB® Release 2.7

Performance Tuning and Monitoring
Three different sets of performance data are gathered: One set in MATLAB on the client, and
two sets in the Star-P® server (red arrows). Later, when the user types “ppperf report”,
the performance data is gathered into a table living on the client (blue arrows).

With this picture in mind, performance monitoring occurs in three places:
1. MATLAB records performance data on the client PC. It makes this data available to you

using its profile facility. This data is also accessible using ppperf with the appropriate
flag set.

2. Star-P® records performance data related to the sub-functions called by your function.
Much of this data is related to the calling history of sub-functions you invoke. This data is
available to you using Star-P®'s ppprofile facility, as well as using ppperf with the
appropriate flag set.

3. Star-P® also keeps timers and counters related to supercomputer resource utilization.
This data is uniquely accessible using Star-P®'s ppperf feature.

Gathering these three categories of performance parameters is suggested in the figure by the
red arrows, which indicate collection of performance data into the associated data structures
and storage tables.

After your program has run, you may request a report showing all recorded performance data
by issuing the command ppperf report. This command brings all the performance data
scattered around the client and server into a table living on the client. This is suggested by
the blue arrows shown in the figure. Once the data is gathered into a table on the client, the
table is then displayed to the user.

Another important picture to visualize when profiling your code is to understand how the client
and the server interact. Under Star-P®, the client and the server process your computation
using a “ping-pong” mode. That is, while Star-P® is performing your calculation, the client
does some work while the server sits idle, and then the server does some work while the
client is idle, then the client does work and the server sits idle, and so on. Each time a work
hand-off occurs, a burst of network activity occurs as data is exchanged between client and
server. Keep this work flow in mind as you examine the data generated by ppperf.

Using ppperf is simple. First, you initiate performance monitoring. This means that you tell
Star-P® to clear any old performance data stored on the server, and start the performance
counters and timers afresh. Next you run your program. When your program is done, you
fetch the performance data from the server and display it. Finally, assuming you are done
with performance monitoring, you turn off the monitoring facility. Here's an example sequence
of commands you could enter in your Star-P® session:

ppperf o2 % Initiate performance monitoring
baz = my_function1(foo, bar); % Function running on server
woof = my_function2(foo, baz); % Another function running on server
my_function3(woof); % A third function running on server
ppperf report % Get and display performance data
ppperf clear % Clear statistics table
Release 2.7 Star-P® Programming Guide for Use with MATLAB® 105

Performance Tuning and Monitoring
ppperf will accumulate performance statistics until you turn it off using one of ppperf
report, ppperf off, or ppperf clear. The distinction between these commands lies in
whether they erase the statistics table. As a general rule, ppperf's subcommands will
behave similarly to the analogous subcommands of MATLAB's profile function.

Gathering performance statistics

• ppperf on | o1
ppperf o2 | o3 <seconds> - This command starts the performance
monitoring process and initializes the results table. It is always the first command
issued when you want to profile your code's execution. You may select one of
three levels of profiling. The profiling level (1, 2, 3) is prefixed with the lower case
letter 'o'. Consult Figure 5-1 to see the three different types of profiling data
measured, and where they are logged. The different profiling levels are invoked
using these flags:

• on - This flag is a synonym for o1. That is, ppperf on is equivalent to ppperf
o1.

• o1 - Returns the data stored in the performance counters and timers on the
server.

• o2 - Returns the data in the server's performance counters and timers. It also
returns the server-side function call history data typically returned by
ppprofile.

• o3 - Returns the data stored in the server's performance counters and timers. It
also returns the server-side function call history data. Finally, it also returns the
client-side profiling data which is gathered by MATLAB's profile function.

• After the profiling level, you may optionally specify the update interval (in seconds)
for statistics gathering (denoted by <seconds> above). The update interval must
be an integer. The update interval is optional; if you don't specify this parameter,
update interval sampling is not done.

• ppperf report - This command stops performance statistics gathering on the
server, brings the performance data to the client, and displays them. Use this
command when you are done gathering statistics on your program and want to see
the results.

• ppperf clear - Turns off profiling and clears the results table.

• ppperf off - Turns off the performance monitoring process, but leaves the results
table alone. Use this command if you want to perform some work without gathering
statistics.

Displaying performance statistics

Star-P®'s ppperf facility supports two methods to display performance statistics: textual and
graphical. Text reports are covered in this section and graphical output is covered in "Using
ppperf's graphical mode".
106 Star-P® Programming Guide for Use with MATLAB® Release 2.7

Performance Tuning and Monitoring
To see profiling results:

• First turn on profiling using ppperf on, then run your program.

• Then issue the command ppperf report, or ppperf report detail.

• ppperf report will emit a long text report detailing the resources used by your
program while it ran.

• ppperf report detail will return a more extensive report. Specifically,
ppperf report detail will display run statistics gathered on each compute
node on the server (ppperf report displays statistics for the server as a
whole).

Here's an example ppperf run. First, we'll look at the program being profiled. It is called
SumDifferences_loop.m. It calculates the RMS deviation from one point to the next in a
1000 element random vector.

% This example will calculate the RMS point-to-point
% deviation of one random point to the next.

xpp = rand(1000*p, 1);
n=length(xpp)-1;
tic
 dx_sum = 0;
 for i = 1:n
 dx = xpp(i+1)-xpp(i);
 dx_sum = dx_sum + dx^2;
 end
 dx_sum = sqrt(dx_sum);
toc
fprintf('dx_sum = %f\n', dx_sum);

This is a particularly bad program for Star-P®, since it involves using a for loop to perform a
simple sum. It is easy to create a vectorized version of this program whose run time is
perhaps 100 times faster. Nonetheless, this code provides a very interesting example for
ppperf profiling since it demonstrates many of the things you can learn by running ppperf
on your code.

Here's the ppperf run:

>> ppperf on
Start MATLAB/Star-P® Performance Metrics
>> SumDifferences_loop
Elapsed time is 12.254049 seconds.
dx_sum = 12.304663
>> ppperf report
===

MATLAB/Star-P® Performance Metrics
Date: 17-May-2007 18:11:01
Client: my_client_machine_address.com
Release 2.7 Star-P® Programming Guide for Use with MATLAB® 107

Performance Tuning and Monitoring
Server: my_server
Elapsed: 32 seconds

Performance Time Measurement

 count min max mean time metric
 2001 0.0029 5.5610 0.0082 16.4061 Client Time
 2001 0.0003 0.0061 0.0004 0.8222 Network Time
 2001 0.0000 0.0003 0.0000 0.0432 Client2Server
 2001 0.0000 0.0001 0.0000 0.0334 Server2Client
 2001 0.0073 0.0226 0.0074 14.7372 Server Time
 2001 0.0073 0.0226 0.0074 14.4858 Command
 2001 0.0000 0.0004 0.0001 0.2128 Command Execute
 1998 0.0000 0.0001 0.0000 0.0384 Command Execute Move
 2001 0.0000 0.0000 0.0000 0.0176 Command EStatus
 1 0.0001 0.0001 0.0001 0.0001 Command Execute Create
 3 0.0000 0.0000 0.0000 0.0000 Command Execute Misc

Performance Process Measurement

 value metric
 34.0630 Starp Real Time
 36.4111 Starp Sys Time
 78.6709 Starp User Time

Star-P® Profiling

function calls time avg time %calls %time
ppdense_viewelement 1998 16.9636 0.0083551 99.8501 99.6233
ppbase_setoption 1 0.030958 0.030958 0.049975 0.18475
ppdense_rand 1 0.023654 0.023654 0.049975 0.14116
ppbase_profile_onoff 1 0.008517 0.008517 0.049975 0.050827
Total 2001 16.7567 0.0083742
>>

Interpretation of ppperf's output

Now that we've seen the output generated by a typical ppperf run, the question is: What
does all that data mean? Let's look at each section generated by ppperf.

The preamble

The preamble provides basic information about the performance run just completed. Here's
the preamble from the above run:

MATLAB/Star-P® Performance Metrics
Date: 17-May-2007 18:11:01
Client: my_client_machine_address.com
Server: my_server
Elapsed: 32 seconds
108 Star-P® Programming Guide for Use with MATLAB® Release 2.7

Performance Tuning and Monitoring
The preamble provides the following information:

• The date of the performance run,

• the names of the client and server computers, and

• the total elapsed time.

If you are running ppperf interactively (for example, typing each command into the Star-P®
prompt), then the elapsed time is the time duration between when you typed in ppperf o2
and when you typed in ppperf report. If you wait for 20 seconds before running your
function, the additional 20 seconds of idle time will be incorporated into the reported elapsed
time.

Performance Time Measurement

This section provides information about how the two computers (client and server) spent their
time on your calculation.

Remember that Star-P® operates in a ping-pong mode. The client does some work while the
server idles, then the server does some work while the client idles, and so on, until your
computation is done.

Also, every time there is a hand-off of work between client and server, a burst of network
activity occurs. The performance time measurement shows you how many times each
component was active in your program, the min, max, and mean time it was active (in
seconds), and the total time required by each component to do its job. Here's the
“Performance Time Measurement” section of the report shown earlier:

Performance Time Measurement

 count min max mean time metric
 2001 0.0029 5.5610 0.0082 16.4061 Client Time
 2001 0.0003 0.0061 0.0004 0.8222 Network Time
 2001 0.0000 0.0003 0.0000 0.0432 Client2Server
 2001 0.0000 0.0001 0.0000 0.0334 Server2Client
 2001 0.0073 0.0226 0.0074 14.7372 Server Time
 2001 0.0073 0.0226 0.0074 14.4858 Command
 2001 0.0000 0.0004 0.0001 0.2128 Command Execute
 1998 0.0000 0.0001 0.0000 0.0384 Command Execute Move
 2001 0.0000 0.0000 0.0000 0.0176 Command EStatus
 1 0.0001 0.0001 0.0001 0.0001 Command Execute Create
 3 0.0000 0.0000 0.0000 0.0000 Command Execute Misc

As you can see, the client performed a chunk of work 2001 times. Also, it consumed by far
the majority of the elapsed time. Since the program SumDifferences_loop.m involves a
for loop iterated 1000 times, it appears that the client performed two tasks for each loop
iteration -- plus one task at the end of the loop -- giving rise to the activity count of 2001.
Release 2.7 Star-P® Programming Guide for Use with MATLAB® 109

Performance Tuning and Monitoring
The network was active 2001 times, which reflects the fact that upon each iteration of the for
loop the client was required to perform two tasks. Also, the large amount of time
communicating on the network signals that this program spent too much time
communicating.

Finally, the server was active 2001 times, but each burst of activity lasted at most a few
milliseconds. This indicates that the server was very underutilized by this program. Since the
whole point of using Star-P® is to effectively harness and use the power of the
supercomputer server, this program, SumDifferences_loop.m, clearly does an inefficient
job of exploiting the potential of Star-P®. Of course, this is expected, since the program is
essentially a big for loop, which is known to be a slow and inefficient way to implement this
computation. Later, we'll look at a vectorized version of the same computation.

Performance Process Measurement

One of the most interesting things you can learn from ppperf is the amount of time spent in
the various software subcomponents (daemons or libraries) running on the server. The
“process measurement” results provide this information.

To visualize the meaning of the “process measurement” data, imagine that the server runs a
Star-P® server daemon. The daemon manages a set of numerical libraries that are used to
evaluate your function. This is shown schematically in Figure 5-1.

When a server call is made, the Star-P® server daemon must spend some time figuring out
how to handle your function call. Having done that, it then hands your data to the appropriate
function in one of the numerical libraries. Once the function is done executing, it hands the
returned data back to the Star-P® server daemon, which in turn sends it to the client.
Meanwhile, performance timers and counters are running, measuring the amount of time
spent in the Star-P® server daemon, as well as the time spent executing the library function.

Here's a report returned in the default mode, for example, ppperf report:

Performance Process Measurement

 value metric
 34.0630 Starp Real Time
 36.4111 Starp Sys Time
 78.6709 Starp User Time

There are several things to note here:

• In this example the only process that ran was the “Starp” process. The “Starp”
process is the Star-P® server daemon, which manages your computation on the
server side. Depending upon the details of your calculation -- and specifically which
numerical engines it invokes on the server -- you may see other processes listed in
this section alongside “Starp”. Rerun the example to get Octave times.

• Three times are listed for each process:
110 Star-P® Programming Guide for Use with MATLAB® Release 2.7

Performance Tuning and Monitoring
1. Real Time - The wall clock time spent by this process during the execution of your
function. This can be greater or less than User Time depending on the application.

2. Sys Time - This is the CPU time spent executing “kernel space” code on the server
at the behest of your program. This will likely be smaller than the real, wall clock
time since the server is multitasking many jobs at once. This can be greater or less
than User Time depending on the application.

3. User Time - This is the CPU time spent executing “user space” code on the server
at the request of your program. This will likely be smaller than the real, wall clock
time since the server is multitasking many jobs at once.

• The elapsed time reported is the time since the ppperf command was invoked, not
since the process started.

If you issue the command ppperf report detail, then ppperf will return the time spent
broken down by compute node. The “Performance Process Measurement” section is the only
one in which ppperf report detail will provide additional detailed information about
your run. Here are the results of a new run of SumDifferences_loop.m under ppperf
showing the difference between the default and the detailed report:

As you can see, using ppperf report detail shows a breakdown of time spent on each
compute node. You can use this information to help locate a node which might be particularly
slow, either due to an excessively long task-parallel computation, or perhaps because it has

Default Performance Process Measurement

 value metric
 34.0630 Starp Real Time
 36.4111 Starp Sys Time
 78.6709 Starp User Time

Detailed Performance Process Measurement

 value metric
 34.0630 Starp Real Time
 34.0630 Starp Real Time(0)
 33.1740 Starp Real Time(1)
 33.2720 Starp Real Time(2)
 32.2670 Starp Real Time(3)
 36.4111 Starp Sys Time
 6.6670 Starp Sys Time(0)
 9.9482 Starp Sys Time(1)
 10.0010 Starp Sys Time(2)
 9.7949 Starp Sys Time(3)
 78.6709 Starp User Time
 9.8037 Starp User Time(0)
 23.2090 Starp User Time(1)
 23.2539 Starp User Time(2)
 22.4043 Starp User Time(3)
Release 2.7 Star-P® Programming Guide for Use with MATLAB® 111

Performance Tuning and Monitoring
other activity running on it. You can use this information to help balance the load across all
compute nodes on your machine.

Star-P® Profiling

This section lists all functions called on the server while running your program. It tabulates
the number of invocations as well as the average time spent in each function, along with
some other performance metrics.

The functions listed in the Star-P® Profiling section are exclusively built-in Star-P® functions.
The built-in Star-P® functions are typically named something like ppdense_foo or
ppbase_bar to distinguish them from the names you might give to your functions. In
general, these Star-P® built-in functions are not available to you to run, and you cannot use
help ppdense_foo at the command line to get more information about the function.
However, the functions are usually named in a logical way so that you can make an educated
guess about what the functions are doing.

The information provided in the Star-P® Profiling section is particularly useful when tweaking
your code for best performance, since it allows you to identify which functions consume the
majority of your compute time. You can focus your optimization efforts on improving the
functions which consume the most time, or at least optimizing the number of times each
function is invoked.

Here's the Star-P® Profiling section copied from the above run of
SumDifferences_loop.m:

Star-P® Profiling

function calls time avg time %calls %time
ppdense_viewelement 1998 16.9636 0.0083551 99.8501 99.6233
ppbase_setoption 1 0.030958 0.030958 0.049975 0.18475
ppdense_rand 1 0.023654 0.023654 0.049975 0.14116
ppbase_profile_onoff 1 0.008517 0.008517 0.049975 0.050827
Total 2001 16.7567 0.0083742

As you can see, the Star-P® built-in function ppdense_viewelement consumed the
majority of the compute time during the run. But what is ppdense_viewelement? This
function is invoked each time an array element (for example, a scalar) must be returned from
the server to the client for processing. Our program SumDifferences_loop.m iterates
over all elements in the vector and sums them, as follows:

n = length(xpp)-1;
for i = 1:n
 dx = xpp(i+1)-xpp(i);
 dx_sum = dx_sum + dx^2;
end
112 Star-P® Programming Guide for Use with MATLAB® Release 2.7

Performance Tuning and Monitoring
Recall that under Star-P®, scalar variables always live on the client. Therefore, when this
program requests the values xpp(i+1) and xpp(i), Star-P® goes to the server, gets the
individual elements out of the vector, and brings them to the client where they are added.
That's why ppdense_viewelement is invoked 1998 times.

Lessons Learned

When using ppperf on your code, look for the following things:

• Time spent on client vs. server. Is the program running on either client and server
according to your expectations? That is, if you think you have exported a calculation
to the server, but you see significant activity on the client, this is a signal that your
program isn't fully optimized.

• Excessive network time. Monitor your program's network time. Keep in mind that
a 100mb or 1Gig network link between your client and server can transport many
millions of bytes in well under a second. Therefore, if your network time is not
commensurate with transferring a small number of bytes (depending upon your
program's structure), you may be paying a communication time penalty due to for
loops or an unexpected data transfer.

• Number of times the client runs a task. If your client runs a short task many times,
or there is significant “ping-ponging” between the client and the server, your program
is causing too much client/server communication. Find a way to keep all the
computation on the server. Perhaps you need to vectorize more?

• Excessive time spent on one or two functions. If your program spends most of
its time running one particular function, you should probably focus attention on why
that is the case. If the one function was written by you, then it is a good candidate
for further optimization.

• Many calls to ppdense_viewelement. ppdense_viewelement transfers
scalar data from server to client. If this function dominates your function usage, it is
a signal that you need to vectorize your code.

Using ppperf's graphical mode

Besides providing you a text report, ppperf can also show a graph of client and server
activity. This information can be useful if you want to see exactly when your computation was
passed from client to server and back again.

You invoke ppperf graphical mode in much the same way as you get a text report. The
particular command sequence looks like this:

ppperf o2 1
ppperf graph on
my_function
ppperf off
Release 2.7 Star-P® Programming Guide for Use with MATLAB® 113

Performance Tuning and Monitoring
A screenshot showing the results of a graphical profiling session using ppperf is presented
in Figure 5-2.

Figure 5-2 Graphical output of ppperf2

Graphical output of ppperf, showing activity on client (top), network (middle), and server
(bottom). The units are percent of activity, where 100% means that the particular Star-P®
subcomponent was active 100% of the time over the last measurement interval. Remember
that this is not a measure of CPU utilization! Rather, the graph shows which Star-P®
subcomponent is active (or has control over) performing your calculation.

Here are some things to keep in mind when using ppperf's graphical mode:

• The graphical display is only available in conjunction with the o2 and o3 statistics
gathering levels.

• When you turn on performance logging for graphical display, you must specify the
logging interval. The default value (1 second for a text report) does not apply to
graphical output. If you neglect to specify a logging interval, Star-P® will give you a
“No samples” error. Again, the logging interval must be an integer; the units are
seconds. Accordingly, in the above example the logging interval is explicitly set to
one second.

2. Illustration of the MATLAB® Desktop IDE by The MathWorks.
114 Star-P® Programming Guide for Use with MATLAB® Release 2.7

Performance Tuning and Monitoring
• You can get a real-time running update of activity on the client and server by turning
on graphics mode before invoking your function, as in the example shown in Figure
5-2. Your graphic display will be updated whenever the client has control over your
computation, and is available to update the graphics window. Note that if you kick
off a long, server-side calculation (for example, using ppeval), the ppperf graphic
won't update until the server is done working, and passes control to the client again.
The same is true for the client side when it is in a CPU-bound execution.

• After the run is over, turn off the performance logging using ppperf off, as shown
in Figure 5-2. If you do not turn off logging, then the performance graphic will
continue to update, and the region of interest - the portion of the graph showing your
computation running - will compress within the available space, making it hard to
read.

• If ppperf data gathering is not active when you invoke ppperf graph on (for
example, you have issued a ppperf off command), then ppperf will plot the
static results contained in the performance results table. If you do not have any data
in the performance results table, Star-P® will give you a “No samples” error.

• Since performance samples are made at regular, but large intervals, the client and
server utilization graphs - like that shown in Figure 5-2 - represent averages over the
sample interval. As you know, Star-P® ping-pongs control between client and server;
while one machine is busy processing, the other is essentially idle. In the program
SumDifferences_loop.m, control is passed between the client and the server
about 2000 times. However, the update interval is q seconds. Therefore, ppperf
cannot graph each and every time control is passed between client and server.
Rather, it plots the average time spent on each, over each 1 second measurement
intervals.

• When both client and server are idle, ppperf's graphing function will indicate 100%
client utilization. This is because the graph itself is not a graph of CPU loading.
Rather, it is simply an indication of which computer is currently in control of your
computation. When both computers are idle, waiting for you to type something, then
the client is the computer who is in control. Therefore, it's graph will indicate 100%
utilization.

You might wonder, “For what is ppperf's graphics facility useful?” It can be used for quick,
visual identification of situations where there is too much communication between client and
server during the course of a computation.

This is signaled by graphs showing compute activity on both the client and the server at the
same time. A better computation is shown in the graph in Figure 5-3. This particular
computation involved computing the Mandelbrot set using a task-parallel algorithm. In this
case, the client initialized some variables, and then passed control to the server. The server
performed the bulk of the computation over a period of about 30 seconds, and then returned
control to the client.

The resulting graph shows that 100% of the computation takes place on either the client or
the server, depending upon time. At no time does it appear that the computation is shared
Release 2.7 Star-P® Programming Guide for Use with MATLAB® 115

Performance Tuning and Monitoring
between client and server. Therefore, this computation is not bogged down with client/server
communication.

Figure 5-3 Graphical output from ppperf showing a different Star-P® session.

In this example, a ppeval call was used to compute the Mandelbrot set. The ppeval call
lasted about 30 seconds, during which time the server was working on the computation 100%
of the time, while the client idled.

Any successful computation performed using Star-P® should show a similar graph: 100% of
the computation should take place on either the client or the server for long periods of time
(seconds or longer). Control of the computation may bounce back and forth between client
and server, but certainly not frequently, and at no time should your program appear to share
the computation between client and server.

This highlights another use of ppperf's graphing facility: It can alert you to situations where
you think a portion of a calculation is taking place on the server, but it is actually running on
the client. That is, since ppperf shows you where the computation is happening, it can help
you verify that your program is actually doing what you think it should be doing.

Finally, ppperf’s graphic mode can quickly show you if you are spending too much time
running on the client. Since you likely purchased Star-P® to help export computations to the
server, if you find that a lot of your compute time is spent on the client, then you probably
need to modify your program so that more of the computation is performed on the server.
116 Star-P® Programming Guide for Use with MATLAB® Release 2.7

Performance Tuning and Monitoring
Lessons Learned

• Use ppperf's graphic facility as a quick way to see if your program requires too
much client/server communication. This scenario is signaled by performance
graphs showing computation is shared between client and server.

• ppperf’s graphic facility can also verify that your code is actually doing what you
think it should be doing.

• The graphic facility can also show you if you are not getting enough use from your
server. In the best case, you should see client activity at the beginning and end of
your program run, and server activity in the middle for the bulk of its run.

Using ppperf to Eliminate Performance Bottlenecks

To illustrate the utility of ppperf when optimizing your code's performance, let's look at an
example finite element method calculation (FEM). FEM problems typically involve
manipulating large matrices, and are computation intensive.

Therefore, FEM problems are well-adapted to solution using Star-P®. In particular,
data-parallel matrix manipulation is a logical use of Star-P® for FEM problems. This means
that we want to structure the program so that all large matrices live on, and are processed on
the server HPC.

The example code shown below was originally written solely in MATLAB, with no parallel
extensions. The program consists of four parts:
1. Data read-in and initialization,
2. Building the stiffness matrix,
3. Solving the set of linear equations, and
4. Post-processing and solution visualization.

% Initial, non-parallelized version.
clear;

disp('load grid file')
tic;
 load('/home/FEM/fem/mediumgrid.mat');
toc

% set up vertices for looping:
pi = points(connec(:,1),:);
pj = points(connec(:,2),:);
pm = points(connec(:,3),:);

% Each element (triangle) results into a [6x6]
% submatrix of K
nelem = size(connec,1); % number of elements in the mesh
npoints = size(points,1); % number of point that make up the mesh
nK = npoints*2; % size of the stiffness matrix

% Set up the global variables used in the calculation of the stiffness
Release 2.7 Star-P® Programming Guide for Use with MATLAB® 117

Performance Tuning and Monitoring
matrix.
tocnp = 1;
disp('Building stiffnessmatrix');
tic
 % Set up global variables
 set_globals(1);
 % allocate row, column, value arrays
 II = zeros(6,6,nelem);
 JJ = II;
 KK = II;
 % Get stiffnessmatrix contribution for each mesh element
 for i = 1:nelem
 [II(:,:,i), JJ(:,:,i), KK(:,:,i)] = ...
 get_k_matrix(pi(i,:),pj(i,:),pm(i,:),connec(i,:));
 end
toc;

disp('Create sparse matrix');
tic;
 % Setup stiffness matrix as a sparse matrix:
 K = sparse(II(:),JJ(:),KK(:),nK,nK);
toc;

%
% Now we need to set the boundary conditions.
% For the boundary condititions we require that the
% vertices on the bottom stay fixed.
%
% find vertices on the bottom
disp('Apply boundary conditions');
tic;
 nbase = length(ipoints_base);
 K(2*ipoints_base-1,:) = 0.0;
 K(2*ipoints_base,:) = 0.0;
 K(:,2*ipoints_base-1) = 0.0;
 K(:,2*ipoints_base) = 0.0;
 K(2*ipoints_base-1,2*ipoints_base-1) = speye(nbase);
 K(2*ipoints_base,2*ipoints_base) = speye(nbase);
toc;

% Make a force vector. Apply force along the top only.
% and only in the +x direction
disp('Make force vector');
tic;
 ntop = length(ipoints_top);
 force = 2;
 F = sparse(ipoints_top,ones(1,ntop),force,nK,1);

 % Just to make sure we have no forces excerted on the bottom
 F(2*ipoints_base-1) = 0.0;
 F(2*ipoints_base) = 0.0;
toc;

118 Star-P® Programming Guide for Use with MATLAB® Release 2.7

Performance Tuning and Monitoring
% Solve the system of linear equations.
disp('Solve system');
tic;
 displacement = K\F;
toc;

% Calculate new point positions based on old ones and the displacement
% from the FEM analysis
tic;
 i= 1:npoints;
 new_points(i,1) = points(i,1)+displacement(2*i-1);
 new_points(i,2) = points(i,2)+displacement(2*i);
toc

% Plot the results
clf;
subplot(1,2,1)
h=trimesh(connec,points(:,1),points(:,2),zeros(size(points,1),1));
set(h,'EdgeColor','k');
view(2),axis equal,axis off,drawnow;

subplot(1,2,2)
h=trimesh(connec,new_points(:,1),new_points(:,2),zeros(size(new_points,1),1));
set(h,'EdgeColor','k');
view(2),axis equal,axis off,drawnow;

It might be tempting to run this program under ppperf to see what happens. However, since
it is a pure MATLAB program, it runs exclusively on the client. Therefore, it doesn't generate
any server-side performance data, so profiling with ppperf does not provide any useful
statistics. (Running this program under ppperf o3 would indeed show performance data,
specifically the performance data gathered by MATLAB. Since this is not relevant to Star-P®
performance tweaking, we will skip that step here.)

Parallelizing this code under Star-P® involves several, simple steps.

First, since FEM modeling is a logical candidate for data-parallel processing, we will simply
read the matrix data into the server (instead of the client) by replacing the load statement
with ppload. This tells Star-P® to read the data from a disk on the server directly into the
server's memory. (This implies that you previously copied the data onto the server machine
using a separate step, for example, using FTP.) This change is highlighted in blue in the
listing below.

Once the data is read into the server using ppload, a couple of other changes become
necessary. First, since points, connec, pi, pj, and pm are now all server-side variables, the
return from get_k_matrix(pi(i,:),pj(i,:),pm(i,:),connec(i,:)) will also be a
server variable. Therefore, we must initialize II, JJ, and KK on the server, instead of the
client. Second, since the matrices all live on the server, we must bring them to the client using
ppfront before plotting.
Release 2.7 Star-P® Programming Guide for Use with MATLAB® 119

Performance Tuning and Monitoring
With these changes, the parallelized FEM program takes the following form:

% Partially parallelized version. -- fem_ppload.m.
clear;

disp('load grid file')
tic;

 ppload('/home/FEM/fem/mediumgrid.mat'); % --- Star-P®! ---
toc

% set up vertices for looping:
pi = points(connec(:,1),:);
pj = points(connec(:,2),:);
pm = points(connec(:,3),:);

% Each element (triangle) results into a [6x6]
% submatrix of K
nelem = size(connec,1); % number of elements in the mesh
npoints = size(points,1); % number of points that make up the mesh
nK = npoints*2; % size of the stiffness matrix

% Set up the global variables used in the calculation of the stiffness
matrix.
tocnp = 1;
disp('Building stiffnessmatrix');
tic
 % Set up global variables
 set_globals(1);
 % allocate row, column, value arrays

 II = zeros(6,6,nelem*p); % --- Star-P®! ---
 JJ = II; % lives on server since
 KK = II; % derived from II
 % Get stiffnessmatrix contribution for each mesh element
 for i = 1:nelem
 [II(:,:,i), JJ(:,:,i), KK(:,:,i)] = ...
 get_k_matrix(pi(i,:),pj(i,:),pm(i,:),connec(i,:));
 end
toc;

disp('Create sparse matrix');
tic;
 % Setup stiffness matrix as a sparse matrix:
 K = sparse(II(:),JJ(:),KK(:),nK,nK);
toc;

%
% Now we need to set the boundary conditions.
%
% For the boundary condititions we require that the
% vertices on the bottom stay fixed.
%
% a) find vertices on the bottom
120 Star-P® Programming Guide for Use with MATLAB® Release 2.7

Performance Tuning and Monitoring
%
disp('Apply boundary conditions');
tic;
 nbase = length(ipoints_base);
 K(2*ipoints_base-1,:) = 0.0;
 K(2*ipoints_base,:) = 0.0;
 K(:,2*ipoints_base-1) = 0.0;
 K(:,2*ipoints_base) = 0.0;
 K(2*ipoints_base-1,2*ipoints_base-1) = speye(nbase);
 K(2*ipoints_base,2*ipoints_base) = speye(nbase);
toc;

% Make a force vector. Apply force along the top only.
% and only in the +x direction
disp('Make force vector');
tic;
 ntop = length(ipoints_top);
 force = 2;
 F = sparse(ipoints_top,ones(1,ntop),force,nK,1);

 % Just to make sure we have no forces exerted on the bottom
 F(2*ipoints_base-1) = 0.0;
 F(2*ipoints_base) = 0.0;
toc;

% Solve the system of linear equations.
disp('Solve system');
tic;
 displacement = K\F;
toc;

% Calculate new point positions based on old ones and the displacement
% from the FEM analysis
tic;
 i= 1:npoints;
 new_points(i,1) = points(i,1)+displacement(2*i-1);
 new_points(i,2) = points(i,2)+displacement(2*i);
toc

% Move results to client for plotting

disp('Move results to client and plot them') % --- Star-P®! ---
tic;

 new_points = ppfront(new_points); % --- Star-P®! ---

 points = ppfront(points); % --- Star-P®! ---

 connec = ppfront(connec); % --- Star-P®! ---
toc;

% Plot the results
clf;
subplot(1,2,1)
h=trimesh(connec,points(:,1),points(:,2),zeros(size(points,1),1));
Release 2.7 Star-P® Programming Guide for Use with MATLAB® 121

Performance Tuning and Monitoring
set(h,'EdgeColor','k');
view(2),axis equal,axis off,drawnow;

subplot(1,2,2)
h=trimesh(connec,new_points(:,1),new_points(:,2),zeros(size(new_points,1),1));
set(h,'EdgeColor','k');
view(2),axis equal,axis off,drawnow;

With these changes, this program is now parallelized, and will execute on the server.

Unfortunately, with the above changes, the FEM program is now extremely slow. Watching
the output of disp as the program executes, it is clear that the above program gets stuck
somehow when it tries to build the stiffness matrix. But what is wrong? To investigate this
question, you can use ppperf in your Star-P® session as follows:
1. Turn on profiling: ppperf o2.
2. Run the program: fem_ppload.
3. Let the program run for a while. Then, when you are tired of waiting for it to complete, hit

<control>-C.
4. Stop profiling: ppperf off.
5. Bring up the ppperf graph: ppperf graph on.

Here's a log showing this sequence of events in a Star-P® session:

>> pp_perf o2
Start MATLAB/Star-P® Performance Metrics
>> fem_ppload
load grid file
Elapsed time is 0.100384 seconds.
Building stiffnessmatrix
Error in ==> datenum at 92
n = datenummx(arg1);

Error in ==> now at 16
t = datenum(clock);

Error in ==>
/usr/local/starp-versions/6718/matlab/pp_perfupdate.p>pp_perfupdate at 87

Error in ==>
/usr/local/starp-versions/6718/matlab/cppclient/private/ppprofileupdate.p>pppr
ofileupdate at 63

Error in ==>
/usr/local/starp-versions/6718/matlab/@ddense/ctranspose.p>ctranspose at 4

Error in ==> get_k_matrix at 66
i = j';
Error in ==> fem_ppload at 32
 [II(:,:,i), JJ(:,:,i), KK(:,:,i)] = ...
122 Star-P® Programming Guide for Use with MATLAB® Release 2.7

Performance Tuning and Monitoring
>> pp_perf off
Stop MATLAB/Star-P® Performance Metrics
>> pp_perf graph on

(The error beginning Error in ==> datenum at 92 was generated as a consequence
of pressing <control>-C while Star-P® was running.) The graph generated by this ppperf run
is shown in Figure 5-4. The salient feature to note is that both client and server show about
50% utilization for well over 60 seconds (the amount of time this calculation was allowed to
run before it was killed). This is a strong signal that too much client-server communication is
taking place. Every time computational control is handed off between client and server, a time
penalty must be paid since communication between the two machines can last for several
milliseconds.

Figure 5-4 Graph generated when running fem_ppload.m

Since both client and server show compute activity occurring at the same time, it is likely that
control of the program is ‘ping-ponging’ rapidly back and forth between client and server. This
implies a severe performance penalty, since each transfer of control involves a
communications delay.

The hypothesis of too much client-server activity is further evidenced by the result of running
ppperf report, as shown here:

>> ppperf report
===

MATLAB/Star-P® Performance Metrics
Date: 17-May-2007 18:18:23
Client: my_client_machine_address.com
Release 2.7 Star-P® Programming Guide for Use with MATLAB® 123

Performance Tuning and Monitoring
Server: my_server
Elapsed: 72 seconds

Performance Time Measurement

 count min max mean time metric
 6205 0.0014 3.9374 0.0077 29.6009 Client Time
 6205 0.0002 0.1298 0.0004 2.6080 Network Time
 6206 0.0000 0.0025 0.0000 0.1488 Client2Server
 6206 0.0000 0.0043 0.0000 0.1171 Server2Client
 6205 0.0073 0.1317 0.0093 39.9593 Server Time
 6206 0.0073 0.1317 0.0093 39.9717 Command
 6206 0.0072 0.1239 0.0073 27.3850 Command Distribute
 5555 0.0000 0.0528 0.0004 2.1035 Command Execute
 978 0.0000 0.0137 0.0016 1.5488 Command Execute MathOp
 6206 0.0000 0.0014 0.0001 0.4486 Command EStatus
 3423 0.0000 0.0001 0.0001 0.2308 Command Execute Move
 327 0.0002 0.0527 0.0005 0.1577 Command Execute LibOp
 658 0.0000 0.0164 0.0001 0.0470 Command Execute SubsRef
 1312 0.0000 0.0001 0.0000 0.0327 Command Execute Misc
 163 0.0000 0.0002 0.0000 0.0055 Command Execute Redist
Performance Process Measurement

 value metric
 109.1050 Starp Real Time
 122.6221 Starp Sys Time
 258.5273 Starp User Time

Star-P® Profiling

function calls time avg time %calls %time
ppdense_viewelement 3423 29.0718 0.0084931 55.1652 43.2014
pp_dense_ppback 651 11.4339 0.017564 10.4915 16.991
ppdensend_subsasgn_slice 487 8.1989 0.016835 7.8485 12.1838
ppdense_subsref_row 652 7.5395 0.011564 10.5077 11.2039
ppdense_kron 326 3.2293 0.0099058 5.2538 4.7988
ppdense_scalar_op 326 3.1701 0.0097243 5.2538 4.7109
ppdense_transpose 163 2.7824 0.01707 2.6269 4.1348
ppdense_binary_op 163 1.5718 0.0096428 2.6269 2.3357
ppio_loadallvar 1 0.073072 0.073072 0.016116 0.10859
ppdense_subsref_col 3 0.06607 0.022023 0.048348 0.098182
ppdensend_add 1 0.042937 0.042937 0.016116 0.063806
ppdense_subsref_drow 3 0.033902 0.011301 0.048348 0.050379
ppbase_id2ddata 4 0.033217 0.0083042 0.064464 0.049361
ppbase_setoption 1 0.030537 0.030537 0.016116 0.045379
ppbase_profile_onoff 1 0.016158 0.016158 0.016116 0.024011
Total 6205 67.2935 0.010845
>>
124 Star-P® Programming Guide for Use with MATLAB® Release 2.7

Performance Tuning and Monitoring
There are several important things to note about this report:

• In the “Performance Time Measurement” section, the network time, 2.6 seconds, is
quite large. Although 2.6 seconds may seem small as a wall clock time, a
high-speed Ethernet connection can transfer tens or hundreds of millions of bytes
in one second. Therefore, 2.6 seconds of network time suggests that this program
is burning up the client-server network connection by transferring scores of
megabytes of data back and forth.

• In the “Performance Bytes Measurement” section, the number of times control was
passed from the server to the client was 6025. This is a strong signal that a for loop
is at work. A for loop will cause control of the computation to ping-pong between
client and server with each loop iteration.

• In the “Star-P® Profiling” section, the function ppdense_viewelement was
invoked 3423 times. Recall that this function is called every time a matrix element
is moved from the server to the client. Again, since it is invoked so frequently, we can
see the for loop at work. Also, ppdense_viewelement was running almost 43%
of the time, suggesting that it is called repeatedly, as if from a for loop.

At this point, it is clear that the code suffers from having a for loop, which drags down
Star-P® performance. Inspecting the code shows that there is indeed a for loop involved in
initializing the elements of the stiffness matrix, II, JJ, and KK. Optimizing this code obviously
requires eliminating the for loop. Since the loop involves no dependencies, it can become a
task-parallel operation, and can be replaced by a ppeval call to perform the job of initializing
II, JJ, and KK.

A new version of the program - in which the II, JJ, and KK are initialized in a ppeval call - is
shown below.

% Fully parallelized version -- fem_ppload_ppeval.m.
clear;

disp('load grid file')
tic;

 ppload('/home/FEM/fem/mediumgrid.mat'); % --- Star-P®! ---
toc

% set up vertices for looping:
pi = points(connec(:,1),:);
pj = points(connec(:,2),:);
pm = points(connec(:,3),:);
% Each element (triangle) results into a [6x6] submatrix of K
nelem = size(connec,1); % number of elements in the mesh
npoints = size(points,1); % number of point that make up the mesh
nK = npoints*2; % size of the stiffness matrix

% Set up the global variables used in the calculation of the stiffness matrix.
tocnp = 1;
disp('Building stiffnessmatrix');
Release 2.7 Star-P® Programming Guide for Use with MATLAB® 125

Performance Tuning and Monitoring
tic
 % Set up global variables.
 % We need to use ppeval in this case since
 % we need to set the global variables on ALL processors.

 out = ppeval('set_globals',1:np); % --- Star-P®! ---
 %
 % Get stiffnessmatrix contribution for each mesh element
 % Note that we need to split the arguments along the rows
 [II,JJ,KK] = ppeval('get_k_matrix',split(pi,1),split(pj,1),...
 split(pm,1),split(connec,1));
 % --- Star-P®! ---
toc;

disp('Create sparse matrix');
tic;
 % Setup stiffness matrix as a sparse matrix:
 K = sparse(II(:),JJ(:),KK(:),nK,nK);
toc;

%
% Now we need to set the boundary conditions.
%
% For the boundary conditions we require that the
% vertices on the bottom stay fixed.
%
% a) find vertices on the bottom
%
disp('Apply boundary conditions');
tic;
 nbase = length(ipoints_base);
 K(2*ipoints_base-1,:) = 0.0;
 K(2*ipoints_base,:) = 0.0;
 K(:,2*ipoints_base-1) = 0.0;
 K(:,2*ipoints_base) = 0.0;
 K(2*ipoints_base-1,2*ipoints_base-1) = speye(nbase);
 K(2*ipoints_base,2*ipoints_base) = speye(nbase);
toc;

% Make a force vector. Apply force along the top only
% and only in the +x direction
disp('Make force vector');
tic;
 ntop = length(ipoints_top);
 force = 2;
 F = sparse(ipoints_top,ones(1,ntop),force,nK,1);
 % Just to make sure we have no forces exerted on the bottom
 F(2*ipoints_base-1) = 0.0;
 F(2*ipoints_base) = 0.0;
toc;

% Solve the system of linear equations.
126 Star-P® Programming Guide for Use with MATLAB® Release 2.7

Performance Tuning and Monitoring
disp('Solve system');
tic;
 displacement = K\F;
toc;

% Calculate new point positions based on old ones and the displacement
% from the FEM analysis
tic;
 i= 1:npoints;
 new_points(i,1) = points(i,1)+displacement(2*i-1);
 new_points(i,2) = points(i,2)+displacement(2*i);
toc

% Move results to client for plotting

disp('Move results to client and plot them') % --- Star-P®! ---
tic;
 new_points = ppfront(new_points);
 points = ppfront(points);
 connec = ppfront(connec);
toc;

% Plot the results
clf;
subplot(1,2,1)
h=trimesh(connec,points(:,1),points(:,2),zeros(size(points,1),1));
set(h,'EdgeColor','k');
view(2),axis equal,axis off,drawnow;

subplot(1,2,2)
h=trimesh(connec,new_points(:,1),new_points(:,2),zeros(size(new_points,1),1));
set(h,'EdgeColor','k');
view(2),axis equal,axis off,drawnow;

In this version of the program, initializing the stiffness matrix is performed almost totally as a
parallel operation on the back-end HPC. The entire program takes under 15 seconds to
complete.

Running this program under ppperf reveals the reasons for the performance improvement:
Control of the computation stays with the server for almost the entire computation. Because
the for loop in the initialization section has been replaced with ppeval, the computation
does not need to ping-pong rapidly and repeatedly between client and server. This is shown
quite clearly in the graphical result from ppperf, shown in Figure 5-5. In that figure, transfer
of computational control started with the client, but quickly passed to the server. The
computation stayed on the server until the end of the run, when the computation was passed
back to the client for results visualization.

It's interesting to note that both client and server seem to have been active towards the end
(starting at around 27 seconds); this reflects the fact that ppfront was invoked to move the
results back to the client after they were generated on the server. As such, this behavior is
unavoidable since the results must live on the client in order to graph them.
Release 2.7 Star-P® Programming Guide for Use with MATLAB® 127

Performance Tuning and Monitoring
Figure 5-5 Graph generated when running fem_ppload_ppeval.m

At the beginning of the graph, there is a dead time for about 12 seconds. This represents the
time elapsed between typing ppperf o2 and typing the name of the function to run,
fem_ppload_ppeval. Then, once the program started up, transfer of control passed
quickly from client to server, and stayed with the server for most of the execution time.

At the end, client and server were both active (starting at about 27 seconds) as evidenced by
the rise in client utilization and the accompanying fall in server utilization. This is likely due to
data being transferred back to the client via ppfront.

Finally, the difference between this optimized run, and the previous, slow run can be seen in
the results returned by ppperf report. The report generated by this successful run is
shown below:

>> ppperf report
===

MATLAB/Star-P® Performance Metrics
Date: 17-May-2007 18:21:08
Client: my_client_machine_address.com
Server: my_server
Elapsed: 31 seconds

Performance Time Measurement

 count min max mean time metric
 90 0.0015 10.9759 0.1944 17.4998 Client Time
 90 0.0003 0.0314 0.0016 0.1471 Network Time
128 Star-P® Programming Guide for Use with MATLAB® Release 2.7

Performance Tuning and Monitoring
 90 0.0000 0.0231 0.0004 0.0395 Server2Client
 90 0.0000 0.0059 0.0004 0.0389 Client2Server
 90 0.0073 6.1153 0.1487 13.3871 Server Time
 90 0.0073 6.1153 0.1487 13.3870 Command
 86 0.0000 6.1080 0.1313 11.2893 Command Execute
 10 0.0002 6.1079 1.0281 10.2808 Command Execute Octave
 2 3.9016 3.9017 1.9508 3.9017 Command Octave Init**
 3 0.0001 0.8286 0.2802 0.8406 Command Execute LibOp
 90 0.0072 0.0075 0.0072 0.6504 Command Distribute
 2 0.2233 0.2401 0.1138 0.2275 Command Octave Unpack**
 2 0.0738 0.1567 0.0548 0.1096 Command Octave Xfer2Octave**
 8 0.0002 0.0928 0.0120 0.0957 Command Execute Move
 10 0.0001 0.0109 0.0031 0.0311 Command Execute Redist
 4 0.0055 0.0107 0.0072 0.0290 Command Octave PartGlue
 10 0.0007 0.0027 0.0017 0.0171 Command Execute SubsRef
 90 0.0000 0.0045 0.0002 0.0140 Command EStatus
 2 0.0006 0.0173 0.0065 0.0131 Command Octave WrapperGen**
 2 0.0090 0.0138 0.0057 0.0114 Command Octave Xfer2Starp**
 10 0.0000 0.0023 0.0010 0.0096 Command Execute SubsAsgn
 47 0.0000 0.0018 0.0002 0.0078 Command Execute Misc
 22 0.0001 0.0014 0.0003 0.0062 Command Execute MathOp
 3 0.0001 0.0001 0.0001 0.0002 Command Execute Create
 2 0.0000 0.0000 0.0000 0.0000 Command Octave Execute
Performance Process Measurement

 value metric
 17.5000 Octave Real Time
 4.9678 Octave Sys Time
 24.4189 Octave User Time
 32.0560 Starp Real Time
 13.7227 Starp Sys Time
 39.4756 Starp User Time

Star-P® Profiling
--
function calls time avg time %calls %time
ppemode_emodecall 2 10.336 5.168 2.2222 75.1343
ppio_loadallvar 1 1.187 1.187 1.1111 8.6285
ppsuperlu_gssvx 1 0.83727 0.83727 1.1111 6.0863
ppdense_scalar_op 15 0.20813 0.013876 16.6667 1.513
ppsparse_construct_rowcol 3 0.16121 0.053737 3.3333 1.1719
ppdense_ppfront 3 0.11116 0.037052 3.3333 0.80802
ppbase_id2ddata 6 0.065029 0.010838 6.6667 0.47271
ppemode_part2densend 3 0.060169 0.020056 3.3333 0.43738
pp_dense_ppback 4 0.059271 0.014818 4.4444 0.43085
ppemode_get_common_sizes 4 0.056725 0.014181 4.4444 0.41235
ppdense_subsref_col 3 0.052731 0.017577 3.3333 0.38331
ppdense_ones 3 0.050913 0.016971 3.3333 0.3701
ppdense_subsref_rowcol 2 0.043143 0.021572 2.2222 0.31362
ppbase_getoption 3 0.04006 0.013353 3.3333 0.2912
ppdensend_reshape 3 0.037715 0.012572 3.3333 0.27416
ppdense_transpose 4 0.037607 0.0094018 4.4444 0.27337
ppdense_makeRange 2 0.034688 0.017344 2.2222 0.25215
Release 2.7 Star-P® Programming Guide for Use with MATLAB® 129

Performance Tuning and Monitoring
ppdense_binary_op 2 0.034093 0.017046 2.2222 0.24783
ppdense_subsref_drow 3 0.032474 0.010825 3.3333 0.23606
ppdense_subsasgn_rowcol 2 0.032009 0.016004 2.2222 0.23268
ppdensend_clobber_singlet 3 0.0294 0.0098 3.3333 0.21371
ppsparse_subsasgn_col_s 2 0.028776 0.014388 2.2222 0.20918
ppsparse_subsasgn_rowcol 2 0.026117 0.013059 2.2222 0.18985
ppsparse_reshape 2 0.026024 0.013012 2.2222 0.18917
ppbase_setoption 1 0.025033 0.025033 1.1111 0.18197
ppsparse_subsasgn_row_s 2 0.024614 0.012307 2.2222 0.17892
ppsparse_subsasgn_idx_s 2 0.024431 0.012215 2.2222 0.17759
ppemode_part2dense 1 0.023146 0.023146 1.1111 0.16825
ppdense_subsref_idx 2 0.020242 0.010121 2.2222 0.14714
ppsparse_nnz 1 0.015974 0.015974 1.1111 0.11612
ppbase_profile_onoff 1 0.015961 0.015961 1.1111 0.11602
ppsparse_construct_rowcol 1 0.009912 0.009912 1.1111 0.072052
ppsparse_sparse2full 1 0.009668 0.009668 1.1111 0.070279
Total 90 13.7567 0.15285
>>

The important features to observe in this report are:

• In the “Performance Time Measurement” section, the network time used is 0.15
seconds, which is consistent with reduced client-server communication.

• Under “Performance Process Measurement” a new process has appeared: Octave.
This signals that the Octave engine has been invoked on the back-end server during
processing. Since the only change made in the code involves the ppeval call, the
presence of Octave amongst the called processes signals that ppeval has
executed Octave code while setting up the stiffness matrix -- most likely while
executing get_k_matrix.

• In the “Star-P® Profiling” section, no function is called more times than any other.
This is in contrast to the report generated for fem_ppload.m above, in which
ppdense_viewelement was invoked 3423 times.

• A new function, ppemode_emodecall, was invoked only twice, but soaked up 75%
of the compute time. This function is the Star-P® function which handles ppeval
calls on the server side. Since the ppeval call which initialized the stiffness matrix
soaked up the majority of the wall clock time during this run, it makes sense that
ppemode_emodecall uses most of the server processing time.
130 Star-P® Programming Guide for Use with MATLAB® Release 2.7

Performance Tuning and Monitoring
Lessons Learned

• Use ppperf in graphics mode to identify sections of code with excessive
client-server communication.

• Use ppperf report to provide detailed analysis of what resources your program
uses while executing.

• For best Star-P® performance, make sure your program is thoroughly vectorized!
Avoid using for loops over multi-dimensional data whenever you can. Looping over
multi-dimensional data necessitates transfer of scalar data between client and
server, causing a significant time penalty due to communication overhead.

ppperf command summary

Command Explanation

ppperf on | o1
ppperf o2 | o2 <seconds>

This command starts the performance monitoring
process and initializes the results table. It is always the
first command you issue when you want to profile your
code's execution.

The profiling level (1, 2, 3) is prefixed with the lower case
letter 'o'. The different profiling levels are invoked using
these flags:

• on -- The flag is a synonym for o1. That is, ppperf
on is equivalent to ppperf o1.

• o1 -- This returns the data stored in the performance
counters and timers on the server.

• o2 -- This returns the data in the server's
performance counters and timers. It also returns the
server-side function call history data typically
returned by ppprofile.

• o3 -- This returns the data stored in the server's
performance counters and timers. It also returns the
server-side function call history data. Finally, it
returns the client-side profiling data which is
gathered by MATLAB's "profile" function.

After profiling levels o2 or o3, you may optionally specify
the update interval (in seconds) for statistics gathering
(denoted by <seconds>). The update interval must be an
integer. If you don't specify this parameter, update interval
sampling is not done.
Release 2.7 Star-P® Programming Guide for Use with MATLAB® 131

UNIX Commands to Monitor the Server
UNIX Commands to Monitor the Server

While Star-P® is designed to allow you to program at the level of the MATLAB command
language and ignore the details of how your program runs on the HPC server, there are times
when you may want to monitor the execution of your program directly on the server.

ppperf off This command turns off the performance monitoring
process, but leaves the results table alone. Use this
command if you want to perform some work without
gathering statistics.

ppperf clear This command clears the results table, and turns off
performance data logging. Use this command if you want
to end your performance monitoring session.

ppperf report This command prints out a large text report providing
information about compute resources utilized by your
program while it ran.

ppperf report detail This command prints out a large text report providing
information about compute resources utilized by your
program while it ran. It provides more detail than “ppperf
report”. In particular, it breaks down the process
measurement results for each compute node on your
parallel server.

ppperf graph on This command displays a graph showing compute
resource utilization on the client, network, and server. If
you invoke this command before running your program, it
will show you a real-time graph of your computation's
activity (as long as control passes to the client). If you
invoke this command after executing “ppperf off”, it
will show you the static graph of compute activity recorded
between “ppperf on” and “ppperf off”.

Also, you must specify the update sample when using the
graph option.

• Note that the update interval must be specified to
enable the graph option.

ppperf graph off This command closes the performance graph window. It
does not affect the compiled performance data table.
132 Star-P® Programming Guide for Use with MATLAB® Release 2.7

UNIX Commands to Monitor the Server
The following commands will often be useful for monitoring server processes. Execute these
commands on the HPC server in a terminal window.

• top: This command is often the most useful. See man top for details. It displays the
most active processes on the system over the previous time interval, and can
display all processes or just those of a specific user. It can help you understand if
your Star-P® server processes are being executed, if they're using the processors,
if they're competing with other processes for the processors, etc. top also gives
information about the amount of memory your processes are using, and the total
amount of memory in use by all processes in the system.

• ps: The ps command will tell you about your active processes, giving a snapshot
similar to the information available via top. Since the Star-P® server processes are
initiated from an ssh or rsh session, you may find that ps -lu <yourlogin> will
give you the information you want about your Star-P® processes. In the event that
Star-P® processes hang or get disconnected from the client, this can give you the
process IDs you need to kill the processes.
Release 2.7 Star-P® Programming Guide for Use with MATLAB® 133

UNIX Commands to Monitor the Server
134 Star-P® Programming Guide for Use with MATLAB® Release 2.7

Chapter 6
Star-P® Functions

This chapter summarizes the Star-P® functions that are not part of standard MATLAB and
describes their implementation. It also describes the syntax of the Star-P® functions.

Basic Server Functions Summary

The following table lists the types of functions available.

Function Description

General Functions

fseek The return value FID is a distributed file
identifier. Passing this value to the
following MATLAB functions: fopen(),
fread(), fwrite(), fseek(), frewind() and
fclose() will operate on distributed
matrices on the server with the same
semantics as with regular file id on the
client.

np Returns the number of processes in the
server.

p Creates an instance of a dlayout
object.

pp Is useful for users who wish to use the
variable p for another purpose.

ppbench Collects basic information about the
hardware and software characteristics
of your server, and runs low-level
performance tests on your server.
Release 2.7 Star-P® Programming Guide for Use with MATLAB® 135

Basic Server Functions Summary
ppclear Clears distributed variables from the
server memory.

ppgetoption Returns the value of Star-P®
properties.

ppsetoption Sets the value of Star-P® properties.

ppgetlog Get the Star-P® server log file.

ppgetlogpath Get starpserver log file path.

ppinvoke Invoke a function contained in a
previously loaded user library via the
Star-P® Software Development Kit
(SDK).

pploadpackage Load a compiled user library on the
server.

ppunloadpackage Unload a user library from the server.

ppfopen Open a distributed server-side file
descriptor. The syntax is similar to that
of the regular fopen() but the file is
accessed on the server. You control
data distribution when reading data
from a file on the server as column
distributed only.

ppquit Disconnects from the server and
causes the server to terminate.

ppwhos Gives information about distributed
variables and their sizes (similar to
whos).

pph5whos Print information about variables in a
HDF5 file.

Data Movement Functions

ppback Transfers a local matrix to the server
and stores the handle to the server
matrix.

ppfront Retrieves a distributed matrix from the
server and stores it in local matrix.

Function Description
136 Star-P® Programming Guide for Use with MATLAB® Release 2.7

Basic Server Functions Summary
ppchangedist Allows you to explicitly change the
distribution of a matrix in order to avoid
implicit changes in subsequent
operations.

pph5write Writes variables to an HDF5 file on the
server.

pph5read Reads distributed variables from an
HDF5 file on the server

ppload Loads a data set from the server
filesystem to the back-end.

ppsave Saves backend data to the server
filesystem.

Task Parallel Functions

bcast, ppbcast Broadcasts an array section where the
entire argument is passed along to
each invocation.of a function called by
ppeval.

split, ppsplit Splits an array for each iteration of a
ppeval function.

ppeval Executes a specified function in parallel
on sections of input array(s)

When using ppeval or ppevalsplit to call a compiled C++
library function, use the format PACKAGENAME:FNAME,
where PACKAGENAME is the module name as returned by an
earlier call to ppevalcloadmodule, and, FNAME is the
function name registered in that module. For example, the
call:

ppeval('C://solverlib:polyfit', arg1, arg2);

invokes the polyfit function in the imsl ppevalc module
with input arguments arg1 and arg2.

ppevalsplit Returns a dcell object, a cell array of
return values from each iteration

Function Description
Release 2.7 Star-P® Programming Guide for Use with MATLAB® 137

Basic Server Functions Summary
General Functions

fseek

ST = fseek(fid, offset, origin)

Repositions the file position indicator in the file with the given distributed file identifier FID to
the byte specified with the offset.

The return value FID is a distributed file identifier. Passing this value to the following MATLAB
functions:

• fopen()

• fread()

• fwrite()

• fseek()

• frewind() and

• fclose()

ppevalcloadmodule Loads a C++ module for task parallel
operation on the server. This function is
deprecated as of Release 2.6.0.
Loading compiled C++ libraries can
now also be performed using
pploadpackage.

ppevalcunloadmodule Removes a previously loaded C++
module.from the server. This function is
deprecated as of Release 2.6.0.
Unloading compiled C++ libraries can
now also be performed using
ppunloadpackage.

Performance Functions

ppperf Star-P®’s performance monitoring
function.

ppprofile Collects and display performance
information on Star-P®

pptic/pptoc Provides information complementary to
the MATLAB® tic/toc command

Function Description
138 Star-P® Programming Guide for Use with MATLAB® Release 2.7

Basic Server Functions Summary
np

n = np

Function Syntax Description

• n (double) - number of processes

• np returns the number of processes in the server. This is the argument that was
passed to the -p switch to starp.

Note: This number should be less than or equal to the number of processors.

p

z = p

Function Syntax Description

• z (dlayout) - a dlayout object

• p creates an instance of a dlayout object. p by itself is a ‘symbolic variable’.
Variables of type dlayout are used to tag dimensions as being distributed.

pp

z = pp

Function Syntax Description

• z (dlayout object) - a dlayout object

• pp is an alias to p. pp is useful for users who wish to use the variable p for another
purpose.

Reference

• See p.

ppbench

ppbench collects information about the basic hardware and software characteristics of your
server. When utilizing multiple CPUs in a cluster configuration, the output of this test should
be examined for consistency; for example, the amount of memory per node should be the
same and the reported CPU information is similar.
Release 2.7 Star-P® Programming Guide for Use with MATLAB® 139

Basic Server Functions Summary
If ppbench is invoked with an output argument, then it will return a data structure that can be
stored using the save function and later displayed (see example 1 below).

If ppbench is invoked with no input arguments, then it acts as if it were invoked with the
-levels [0,1] switch.

If the -levels switch is used, the additional argument is either a scalar or a list of levels to
be run. (see example 2 below)

ppbench('-levels',0) will print the lowest level system information which is extracted
from /proc/cpuinfo and /proc/meminfo. In addition, when the Star-P® server utilizes
more than 1 CPU, the generated report will include MPI latency and bandwidth data.

ppbench('-levels',1) will print the results of a single CPU HPC Streams benchmark.
This provides an interesting data point that represents an important class of simple
operations that turn up frequently in HPC applications. See http://www.cs.virginia.edu/stream/ to
see how your results compare with a range of commodity and special purpose CPUs.

If the '-display' switch is used (example 3), the additional argument identifies the data
structure saved from a previous invocation of ppbench, which is then displayed.

Example 1:

X = ppbench

Example 2:

ppbench('-levels',[0,1])

Example 3:

ppbench('-display',X)

ppclear

ppclear eliminates distributed variables from the caller’s Star-P® workspace, and
immediately frees the memory allocated for them on the server. If no argument is provided,
then ppclear removes all distributed variables in the workspace.

ppclear('var1','var2') or ppclear var1 var2 removes the listed variables only.

Important:Invoking bpp = app; ppclear app; will leave the symbol bpp in your
workspace, but the distributed object accessed through bpp will no longer
exist. When you desire a hard copy of a variable, as opposed to a soft copy,
use assignment statements such as bpp = +app; or bpp = app(:,:);.
140 Star-P® Programming Guide for Use with MATLAB® Release 2.7

Basic Server Functions Summary
ppgetoption

Returns the value of the Star-P® properties.

ppsetoption

Sets the value of the Star-P® properties.

ppsetoption('option','value')

Function Syntax Description

• ppsetoption('SparseDirectSolver', 'value') where value can be
SuperLU or MUMPS

• ppsetoption('log', 'value') where value can be one of on (default) or off.
This controls whether information about the steps executed by the server is written
to the log.

• ppsetoption('ppfront_msg','value') where value can be one of on
(default) or off. This controls whether or not the warning message from ppfront
and ppback about large transfers and from ppchangedist about large
redistributions is emitted.

• ppsetoption('ppfront_size',size) where size is the threshold above
which the ppfront/ppback/ppchangedist warning message will be emitted.
The default is 100 megabytes.

• ppsetoption('TaskParallelEngine',<'engine'>) where 'engine' is a
sting containing the task parallel engine you wish to use when calling ppeval or
ppevalsplit. Options for the task parallel engine setting include
'octave-2.9.5' (default), 'octave-2.9.9', or 'C'. Choosing 'C' as your
task parallel engine allows you to call functions from compiled task parallel
packages that are loaded using pploadpackage and called with ppeval or
ppevalsplit.

ppgetlog

Get the Star-P® server log file.

Function Syntax Description

• f = ppgetlog
Release 2.7 Star-P® Programming Guide for Use with MATLAB® 141

Basic Server Functions Summary
Returns the filename of a local temporary file containing the Star-P® server log. The
temporary file is deleted when MATLAB exits.

• ppgetlog(FILENAME)

Stores a copy of the Star-P® server log file in FILENAME.

• ppgetlog -all

Copies ALL files from the server log directory into the client log directory and creates
an all_logs.zip archive with all files in the client log directory.

• ppgetlog -all <filename>

Creates a <filename> zip archive with all files from the client and server log directories.

• f = ppgetlog -all

Creates an all_logs.zip archive with all files from the client and server log
directories and returns the full filename of the archive.

• ppgetlog -all -nozip

Copies all files from the server log directory into the client log directory.

The '-nozip' option is ignored if '-all' is not specified, <filename> is ignored if '-all
-nozip' is specified, and the output is an empty string if '-all -nozip' is specified.

Note: ppgetlog will make an SSH connection to the Star-P® server machine to fetch
the log file, so if your ssh client is not configured for passwordless SSH, then you
may be prompted for your server password again.

ppgetlogpath

Get starpserver log file path.

Function Syntax Description

• F = ppgetlogpath returns the filename of the starpserver log on the server.

• F = ppgetlogpath('server') returns the filename of the starpserver log on the
server.

• F = ppgetlogpath('client') returns the filename of the starpclient log on the
client.

The naming format for individual session log directories is YYYY_MM_DD_HHMM_SS. Hours
are represented in the 24-hour format.

The server log and configuration files will be named as follows:
142 Star-P® Programming Guide for Use with MATLAB® Release 2.7

Basic Server Functions Summary
<log>/workgroup_manager.log
<log>/starp_server.log
<log>/octave_$MPI_RANK.log
<log>/machine_file
<config>/machine_file.user_default
<log>/starp_session_id.*
<config>/user_env.sh

The Client log files will be named as follows:

<log>/starpmatlab.log
<log>/starpclient.log

ppinvoke

Invoke a function contained in a previously loaded user library via the Star-P® SDK.

Function Syntax Description

[varargout] = ppinvoke(function, varargin)
Note: See the “Star-P® Software Development Kit (SDK) Tutorial and Reference Guide”

for more information on this function.

pploadpackage

Loads a compiled task parallel or data parallel user library on the server using positional
arguments.

Function Syntax Description

stringTP = pploadpackage('C','/path/to/package.so','TPname')
stringTP = pploadpackage('C','/path/to/package.so')

Loads a package named 'package.so' containing compiled functions for later use in
ppeval. The first argument, specifies the language in which the target package is written.
Currently, only C or C++ libraries can be loaded on the server for task parallel operation, and
require the initial argument to be the string 'C'. The second string argument specifies a
user-defined name that is used for identification of the task parallel package on the server.
The string provided with the keyword argument name is returned in the function output
stringTP. If the third argument 'TPname' is not provided, then the naming convention
utilized for assigning an output string to stringTP is to take the filename without path,
extension, or underscores, converted to lowercase. This change ensures that the default
name can always be used to prefix a function name, and is recognizable by the Star-P® client
and server.

stringDP = pploadpackage('/path/to/package.so','DPname')
Release 2.7 Star-P® Programming Guide for Use with MATLAB® 143

ISC_StarP_SDK_Tutorial_R26.pdf
ISC_StarP_SDK_Tutorial_R26.pdf
ISC_StarP_SDK_Tutorial_R26.pdf

Basic Server Functions Summary
stringDP = pploadpackage('/path/to/package.so')

When the initial engine string argument is omitted, the package specified will be loaded as a
data parallel package. Currently, only C or C++ libraries can be loaded on the server for task
parallel operation. The keyword argument “name” specifies a user-defined name that is used
for identification of the data parallel package on the server. The string provided with the
keyword argument name is returned in the function output stringDP. If the name keyword is
not provided, then the naming convention utilized for assigning an output string to stringDP
is to take the filename without path, extension, or underscores, converted to lowercase. This
change ensures that the default name can always be used to prefix a function name, and is
recognizable by the Star-P® client and server.

Note: See the “Star-P® Software Development Kit (SDK) Tutorial and Reference Guide”
for more information on this function.

ppunloadpackage

Unload a user task parallel or data parallel library from the server.

Function Syntax Description

ppunloadpackage('C','TPname')
ppunloadpackage('C',stringTP)

By passing the initial engine string argument,'C', along with a string containing the name of
a compiled language task parallel package that has previously been loaded on the server,
ppunloadpackage will unload the package from the Star-P® server’s current compiled
language task parallel engine.

ppunloadpackage('DPname')
ppunloadpackage(stringDP)

By passing only a single string argument, containing the name of a compiled language data
parallel package that has previously been loaded to the server, ppunloadpackage will
unload the package from the Star-P® server.

In the case of unloading either a task parallel or data parallel package, if the name given for the
package does not match the name of a package already loaded on the server, then an error will
be thrown.

Note: See the “Star-P® Software Development Kit (SDK) Tutorial and Reference Guide”
for more information on this function.
144 Star-P® Programming Guide for Use with MATLAB® Release 2.7

ISC_StarP_SDK_Tutorial_R26.pdf
ISC_StarP_SDK_Tutorial_R26.pdf
ISC_StarP_SDK_Tutorial_R26.pdf
ISC_StarP_SDK_Tutorial_R26.pdf
ISC_StarP_SDK_Tutorial_R26.pdf
ISC_StarP_SDK_Tutorial_R26.pdf

Basic Server Functions Summary
ppfopen

Open a distributed server-side file descriptor. The syntax is similar to that of the regular
fopen() but the file is accessed on the server. You control data distribution when reading
data from a file on the server as column distributed only.

Function Syntax Description
FID = ppfopen('F')

Opens file ‘F’ in read-only mode.

FID = ppfopen('F', MODE)

Opens file F in the mode specified by MODE. MODE can be: '

Return Values

The return value FID is a distributed file identifier. Passing this value to the following
MATLAB functions: fopen(), fread(), fwrite(), frewind() and fclose() will
operate on distributed matrices on the server with the same semantics as with regular file
id on the client.

Note: For fread(), you control data distribution when reading data from a file on the
server as column distributed only.

ppquit

Disconnects from the server and causes the server to terminate.

ppwhos

ppwhos lists the variables in the caller's Star-P® workspace. ppwhos is aware of distributed
matrices that exist on the server so it will return the correct dimensions and sizes for those
matrices, as well as returning the distribution information.

MODE DESCRIPTION

rb read

wb write (create if necessary)

ab append (create if necessary)

rb+ read and write (do not create)

wb+ truncate or create for read and write

ab+ read and append (create if necessary)
Release 2.7 Star-P® Programming Guide for Use with MATLAB® 145

Basic Server Functions Summary
ppwhos is the Star-P® equivalent of the MATLAB whos command. It provides detailed
information about the distribution of the server side variables (2nd column), their size (3rd
column), and their types (4th column).

All distributed variables will also show up in the MATLAB whos command, but the information
displayed for these variables does not accurately represent their size and distribution
properties. The ppwhos output helps align the distributions of the variables; in general having
similar distributions for all variables provides the best performance. It also allows identifying
variables that should be distributed, since they are large, which variables are not, and
variables that should not be distributed, since they are small, but are distributed. A typical
ppwhos output looks something like this:

>> app = rand(1000,1000*p);
>> bpp = rand(1000*p,1000);
>> c = rand(1000,1000);
>> ppwhos
Your variables are:
 Name Size Bytes Class
 app 1000x1000p 8000000 ddense array
 bpp 1000px1000 8000000 ddense array
 c 1000x1000 8000000 double array

Grand total is 3000000 elements using 24000000 bytes
MATLAB has a total of 1000000 elements using 8000000 bytes

Star-P® server has a total of 2000000 elements using 16000000 bytes

pph5whos

Print information about variables in a HDF5 file.

pph5whos('FILE')

Prints size and type information of variables in an HDF5 FILE on the server. The format is
similar to the MATLAB whos function.

S = pph5whos('FILE')

Returns the dataset names in an HDF5 FILE along with the corresponding size and type
information in a structure array, S.

Note: pph5whos is able to parse an arbitrary HDF5 file, but will return accurate size and
type information only for datasets that consist of double or double complex dense
and sparse data. In all other cases, the type field is marked 'unknown'.

Reference

See also: pph5write, pph5read.
146 Star-P® Programming Guide for Use with MATLAB® Release 2.7

Basic Server Functions Summary
Data Movement Functions

ppback

Bpp = ppback(A)
Bpp = ppback(A, d)

Transfer the MATLAB matrix A to the backend server and stores the result in Bpp. A can be
dense or sparse.

Function Syntax Description

• Input:

• A (dense/sparse matrix) - MATLAB matrix to be transferred

• d (optional) - distribution

• Output

Bpp (ddense/ddensend/dsparse matrix) - distributed matrix

Transfer the MATLAB matrix A to the backend server and store the result in B.

If A is dense and two-dimensional:

• If d is not specified, then Bpp is column distributed unless it is a column
vector of length > 1, in which case it is row distributed.

• If d is 1, then Bpp is row distributed.

• If d is 2, then Bpp is column distributed.

If A is dense and greater than two-dimensional:

• If d is not specified, then Bpp is distributed along the last dimension, else.

• Bpp is distributed along the dimension specified.

If A is sparse:

• Bpp is row distributed.

Important:A warning message is displayed if the transfer is over a threshold size
(currently 100MB), to avoid silent performance losses. Emission of the
message or the value of the threshold can be changed by use of the
ppsetoption command.

Reference:

See also ppfront, ppsetoption.
Release 2.7 Star-P® Programming Guide for Use with MATLAB® 147

Basic Server Functions Summary
ppfront

Transfers the distributed matrix App from the server to the MATLAB client.

B = ppfront(App)

Function Syntax Description

• Input: App - distributed matrix

• Output: B (dense/sparse MATLAB matrix) - local copy of App

ppfront transfers the distributed matrix A from the server to the MATLAB client.

• If App is a distributed dense matrix, then B is a dense MATLAB matrix.

• If App is a distributed sparse matrix, then B is a sparse matrix.

dlayout objects are converted to double and other non-distributed objects are preserved.

Important:A warning message is emitted if the transfer is over a threshold size (currently
100MB), to avoid silent performance losses. Displays the warning message or
the value of the threshold can be changed by use of the ppsetoption
command. Currently, there is also a 2GB limit for the size of data that can be
transferred from the server to the client using ppfront.

Reference

See also ppback, ppsetoption.

ppchangedist

The ppchangedist command allows you to explicitly change the distribution of a matrix in
order to avoid implicit changes in subsequent operations. This is especially important to do
when performing operations within loops. In order to maximize performance, operands
should have conformant distributions. ppchangedist can be used before and/or after the
loop to prepare for subsequent operations.

Function Syntax Description

 ppchangedist(App,dist)
• App is input ddense

• dist is the desired distribution

• 1 for ROW

• 2 for COLUMN
148 Star-P® Programming Guide for Use with MATLAB® Release 2.7

Basic Server Functions Summary
Important:A warning message is emitted if the transfer is over a threshold size (currently
100MB), to avoid silent performance losses. Emission of the message or the
value of the threshold can be changed by use of the ppsetoption
command.

pph5write

Write variables to a HDF5 file on the server.

Function Syntax Description

pph5write('FILE', VARIABLE1, 'DATASET1', VARIABLE2, 'DATASET2', ...)

Writes VARIABLE1 to DATASET1 in the FILE specified on the server in the HDF5 format.

• If the FILE already exists, it is overwritten.

• Similarly if one of the dataset variables already exists, it is also overwritten with the
new variable.

pph5write('FILE', 'MODE', ...)

Specifies the output mode which can either be 'clobber' or 'append'.

• If the mode is 'clobber' and FILE already exists, it is overwritten.

• If the mode is 'append' and FILE already exists, the variables specified in the
PPH5WRITE call are appended to the FILE. If FILE does not exist, it is newly
created.

Example 1

% Write matrix_a to the dataset /my_matrices/a and matrix_b to the
% dataset /my_matrices/workspaces/temp/matrix_b to the file
% /tmp/temp.h5 on the server, overwriting it if it already exists
pph5write('/tmp/temp.h5', matrix_a, '/my_matrices/a', matrix_b, '/
 my_matrices/workspace/temp/matrix_b');

Example 2

% Append matrix_c to the existing file in the location /
% my_matrices/workspace2/temp/matrix_c
pph5write('/tmp/temp.h5', 'append', matrix_c,'/my_matrices/
 workspace2/temp/matrix_c');

Note: Currently, only writing double and double complex dense and sparse matrices is
supported.

Reference
Release 2.7 Star-P® Programming Guide for Use with MATLAB® 149

Basic Server Functions Summary
See also: pph5read, pph5whos.

pph5read

[VARIABLE1, VARIABLE2, ...] = pph5read('FILE', 'DATASET1', 'DATASET2', ...)

Read distributed variables from a HDF5 file on the server.

Reads from FILE, the contents of DATASET1 into VARIABLE1, DATASET2 into VARIABLE2,
etc.

• If any of the datasets is missing or invalid, or the FILE is not a valid HDF5 file, the
function returns an error.

Example

% Read the contents of the dataset /my_matrices/workspace/temp/matrix_b from
the file /tmp/temp.h5 into the distributed variable matrix_d
matrix_d = pph5read('/tmp/temp.h5', '/my_matrices/workspace/temp/matrix_b');

Only the contents of datasets which contain double or double complex dense or sparse data
can currently be read. In the latter case, the sparse matrix must be stored in a specific format
outlined in “How Star-P® Represents Sparse Matrices”.

Reference

See also: pph5write, pph5whos.

ppload

ppload('f', 'v1', 'v2', ..., dist)

Loads the distributed objects named v1, v2, ... from the file f into variables of the same
names. Specify the distribution to use with dist.

Function Syntax Description

• ppload('f', dist)

Loads all variables out of mat file f, retaining their original names. All loaded matrices
will be distributed the same way, given by dist. A dist value of 1 denotes a
row-distributed object, and a value of 2 denotes a column-distributed object.

• ppload('f','v1', 'v2', ...)

• ppload('f')
150 Star-P® Programming Guide for Use with MATLAB® Release 2.7

Basic Server Functions Summary
If dist is omitted, the ddense objects will be column-distributed by default.

• S = ppload('f', 'v1', 'v2', ..., dist)

Defines S to be a struct containing fields that match the returned variables.

• ppload f v1, v2, ...

Alternate syntax description

ppsave

ppsave('f', 'v1', 'v2', ...)

Saves the distributed objects v1, v2, ... directly to the server file f, each under its own name.

Function Syntax Description

• ppsave('f')

If no variables are listed, saves all distributed objects currently assigned to variable
names in the workspace.

• ppsave('f', 'v1', 'v2', ..., -append)

Appends the variables to the end of file f instead of overwriting.

• ppsave('f', 'v1', 'v2', ...,)

Splits the variable data into one file per processor, each containing the local data for that
processor.

• ppsave f v1, v2, ...

Alternate syntax description

Important:ppsave will not save the contents of any local (client) objects.

Task Parallel Functions

bcast, ppbcast

Tag distributed object x as being broadcast to all of the ppeval calls.

y = bcast(x)
y = ppbcast(x)

References
Release 2.7 Star-P® Programming Guide for Use with MATLAB® 151

Basic Server Functions Summary
Also, see ppeval, and split/ppsplit.

split, ppsplit

Split a distributed object Xpp along dimension dim. Used as input to ppeval.

y = split(Xpp,dim)
y = ppsplit(Xpp,dim)

Function Syntax Description

If dim == 0, then Xpp is split into its elements

Example

split(Xpp,1) splits Xpp by rows
ppsplit(Xpp,2) splits Xpp by columns

Each row is then an input to the function specified in the ppeval call.

References

Also, see ppeval and bcast/ppbcast.

ppeval

Execute a function in parallel on distributed data. ppeval is just another way of specifying
iteration.

[o1,o2,...,oN] = ppeval('foo',in1,in2,...,inl)

Function Syntax Description

Two pieces of information are required for the call:

• The function to be executed. This is the foo argument. It is a string containing the
function name.

• The specification of the set of inputs to foo. These are the in1 arguments. If foo
is a function of k arguments then k in1 arguments are needed. Each of these
arguments are split into inputs to foo by the following rules:

• If class(in1) = 'ddense', then it is split by columns.
If class(in1) = 'double', then it is broadcast (each invocation
of foo gets the entire argument)

• in1 = split(ddense,d), then it is split along dimension d
152 Star-P® Programming Guide for Use with MATLAB® Release 2.7

Basic Server Functions Summary
• in1 = ppsplit(ddense,d),then it is split along dimension d

• in1 = split(ddense,0), then it is split into its constituent elements

• in1 = ppsplit(ddense,0), then it is split into its constituent elements

• in1 = bcast(a), then a is broadcast

• in1 = ppbcast(a), then a is broadcast.

Note: The arguments must “conform” in the sense that the size of each split (excluding
broadcasts, of course) must be the same for all the arguments that are split. In this
way we can determine the total number of calls to foo that will be made.

The output arguments, o1, o2, ..., oN are ddense or ddensend arrays representing
the results of calling 'foo'. Each output argument is created by concatenating the result of
each iteration along the next highest dimension; for example, if K iterations of foo are
performed and the output of each iteration is a matrix of size MxN, then the corresponding
output after the ppeval invocation will be a MxNxK matrix.

Note: Note that prior versions of Star-P® had a version of ppeval that did not reshape
the output arguments to ddense objects. For backward compatibility, this function
is now as ppevalsplit.

ppeval is only defined for arguments that are dense.

If foo returns n output arguments then there will be n output arguments. See also split and
bcast.

When using ppeval or to call a compiled C++ library function, use the format
MODULENAME:FNAME, where MODULENAME is the module name as returned by an earlier call
to ppevalcloadmodule, and, FNAME is the function name registered in that module. For
example, the call:

ppeval('C://solverlib:polyfit', arg1, arg2);

invokes the polyfit function in the imsl C++ module with input arguments arg1 and
arg2.

Known Differences Between MATLAB and Octave Functions

This section lists the known differences between MATLAB and Octave, which is useful to
know when Octave is set as your task parallel engine (the default setting).

• If an inf value is present in a matrix that is used as an argument to eig in ppeval,
Star-P® may hang, while MATLAB returns an error.

• When using the Star-P® Octave TPE, the evaluation of the '++' and '--'
auto-increment/decrement operators differs between ppeval and MATLAB. For
example, x=7;++x returns 8 in ppeval, but returns 7 in MATLAB.
Release 2.7 Star-P® Programming Guide for Use with MATLAB® 153

Basic Server Functions Summary
ppevalsplit

ppevalsplit()

The dcell is analogous to MATLAB cells. The dcell type is different from the other
distributed matrix or array types, as it may not have the same number of data elements per
dcell iteration and hence doesn't have the same degree of regularity as the other
distributions. This enables dcells to be used as return arguments for ppevalsplit().

Because of this potential irregularity, a dcell object cannot be used for much of anything
until it is converted into a “normal” distributed object via the reshape operator. The only
operators that will work on a dcell are those that help you figure out what to convert it into,
e.g., size, numel, length, and reshape, which converts it, in addition to ppwhos. Luckily,
you will almost never need to be aware of dcell arrays or manipulate them.

When using ppevalsplit to call a compiled C++ library function, use the format
PACKAGENAME:FNAME, where PACKAGENAME is the module name as returned by an earlier
call to ppevalcloadmodule (deprecated) or pploadpackage, and, FNAME is the function
name registered in that package. For example, the call:

ppevalsplit('C://solverlib:polyfit', arg1, arg2);

invokes the polyfit function in the imsl C++ module with input arguments arg1 and
arg2.

ppevalcloadmodule

NAME = ppevalcloadmodule(FNAME, NAME)

Loads a task parallel C++ module on the server.

This function is deprecated as of release 2.6.0. Compiled C and C++ task parallel libraries
can now be loaded on the server with pploadpackage.

ppevalcunloadmodule

ppevalcunloadmodule(NAME)

Remove a previously loaded task parallel C++ module.

This function is deprecated as of release 2.6.0. Compiled C and C++ task parallel libraries
can now be unloaded from the server with ppunloadpackage.
154 Star-P® Programming Guide for Use with MATLAB® Release 2.7

Basic Server Functions Summary
Performance Functions

ppperf

ppperf

Provides fine-grained profiling of compute activity on both the client and the server together.
It pays close attention to the time required to perform computational tasks. It also tracks
communication between the client and server over the network. The vision behind ppperf is
to provide you a top-level view of what your program is doing as it runs your calculation.
Using the information provided by ppperf, you can

• identify program choke points,

• identify excessive client/server communication,

• see what functions are invoked on both client and server, and

• see how long each function takes to finish.

This information can be invaluable when debugging or optimizing a Star-P® application.

Function Syntax Description

Command Explanation

ppperf [01 | 02 | 03 | on]
<number>

This command starts the performance monitoring
process and initializes the results table. It is always the
first command you issue when you want to profile your
code's execution. <number> is the update interval (in
seconds) for statistics gathering. The interval must be
an integer. If you don't specify this parameter, it is set
to 1 second.

ppperf off This command turns off the performance monitoring
process, but leaves the results table alone. Use this
command if you want to perform some work without
gathering statistics. You may later resume statistics
gathering by entering ppperf resume.

ppperf clear This command clears the results table, and turns off
performance data logging. Use this command if you
want to end your performance monitoring session.

ppperf resume This command restarts the performance monitoring
process (in other words, after you have paused it using
ppperf off). It will not affect the results table.
Release 2.7 Star-P® Programming Guide for Use with MATLAB® 155

Basic Server Functions Summary
ppprofile

The ppprofile command collects and displays performance information for Star-P®.
ppprofile is a profiler for the Star-P® server. It allows you to examine which function calls
the Star-P® server makes and how much time is spent in each call.

Function Syntax Description

• ppprofile on starts the collection of performance data about each call from the
Star-P® client to the Star-P® server.

• ppprofile on -detail basic has the same effect as ppprofile on.

• ppprofile on -detail full also collects information about the number of
changes of distribution that occur on the server, and the amount of time spent
executing in the server.

• ppprofile off stops gathering data without clearing the data that’s already been
collected.

• ppprofile clear clears the collected data.

• ppprofile display displays the data about each server call as it occurs.

• ppprofile nodisplay delays the immediate display of data about each server call.

• ppprofile report generates a report of the data collected so far.

ppperf report This command prints out a large text report providing
information about compute resources utilized by your
program while it ran.

ppperf report detail This command prints out a large text report providing
information about compute resources utilized by your
program while it ran. It provides more detail than
ppperf report. In particular, it breaks the process
measurement results down for each compute node on
your parallel server.

ppperf graph on This command displays a graph showing compute
resource utilization on the client, network, and server.
If you invoke this command before running your
program, it will show you a real-time graph of your
computation's activity (as long as control passes to the
client). If you invoke this command after executing
ppperf off, it will show you the static graph of
compute activity recorded between ppperf on and
ppperf off.

ppperf graph off This command closes the performance graph window.
It does not affect the compiled performance data table.
156 Star-P® Programming Guide for Use with MATLAB® Release 2.7

Basic Server Functions Summary
See "Summary and Per-Server-Call Timings with ppprofile" for examples of the usage of
ppprofile.

Example

To turn profiling on, issue the following command:

>> ppprofile on

Then follow with the commands or scripts of interest and end with ppprofile report:

>> ppprofile on
>> app = rand(1000*p);
>> bpp = inv(app);
>> dpp = inv(app);
>> cpp = eig(bpp);
>> ppprofile report
function calls time avg time %calls %time
ppscalapack_eig 1 6.3244 6.3244 10 90.082
ppscalapack_inv 2 0.62992 0.31496 20 8.9723
ppdense_scalar_op 1 0.014254 0.014254 10 0.20303
ppdense_binary_op 1 0.012628 0.012628 10 0.17987
ppdense_sumv 1 0.009353 0.009353 10 0.13322
ppdense_rand 1 0.009036 0.009036 10 0.1287
ppbase_setoption 1 0.00856 0.00856 10 0.12192
ppdense_transpose 1 0.006571 0.006571 10 0.093594
ppdense_sum 1 0.005996 0.005996 10 0.085404
Total 10 7.0208 0.70208

The ppprofile information is ordered in columns and displays, from left to right, the server
function called, the number of function calls, the time spent inside the function, the average
time spent inside the function per function call, the percentage of function calls, and the
percentage of time spend inside the function. For the full range of functionality of ppprofile
please consult the Command Reference Guide or type help ppprofile in Star-P®.

pptic/pptoc

pptic/pptoc provides information complementary to the MATLAB tic/toc command.
The latter provides the wall-clock time of the instructions enclosed by the tic/toc
statement and the former provides information on the communication between the client and
the server.

The pptic/pptoc output displays:

• the number of messages and the number of bytes received by the server from the
client and

• the number of messages and the number of bytes sent from the server to the client.
Release 2.7 Star-P® Programming Guide for Use with MATLAB® 157

Basic Server Functions Summary
>> app = rand(1000*p);
>> pptic; dpp = inv(app); pptoc;
Client/server communication report:
 Sent by server: 1 messages, 1.120e+02 bytes
 Received by server: 1 messages, 2.400e+01 bytes
 Total communication time: 4.840e-05 seconds
Server processing report:
 Duration of calculation on server (wall clock time): 3.124e-01s
 #ppchangedist calls: 0
--
Total time: 3.219e-01 seconds

In addition to the number of messages and bytes received and sent, pptic/pptoc shows
the time spent on communication and calculation as well as the number of distribution
changes needed to accomplish the instructions enclosed by the pptic/pptoc statement.

The two important pieces of information contained in pptic/pptoc that affect performance
are the bytes received or sent and the number of distribution changes.

Combining client variables and server variables in the expression will result in the movement
of the client variable to the server, which will show up in the bytes received field. Since data
movement is expensive, this is a possible place to enhance performance, especially if the
expression happens to be located inside a looping construct. For example, compare the
following two calculations:

Example 1

% Multiply client matrix and server matrix
>> A = rand(1000);
>> Bpp = rand(1000*p);
>> tic; pptic; Cpp = A * Bpp; pptoc; toc;
Client/server communication report:
 Sent by server: 2 messages, 1.840e+02 bytes
 Received by server: 2 messages, 8.000e+06 bytes
 Total communication time: 6.799e-01 seconds
Server processing report:
 Duration of calculation on server (wall clock time): 1.427e-01s
 #ppchangedist calls: 0
--
Total time: 8.771e-01 seconds
Elapsed time is 0.877322 seconds.

Example 2

% Multiply two server matrices
>> App = rand(1000*p);
>> Bpp = rand(1000*p);
>> tic; pptic; Cpp = App * Bpp; pptoc; toc;
Client/server communication report:
158 Star-P® Programming Guide for Use with MATLAB® Release 2.7

Basic Server Functions Summary
 Sent by server: 1 messages, 9.600e+01 bytes
 Received by server: 1 messages, 4.000e+01 bytes
 Total communication time: 6.127e-05 seconds
Server processing report:
 Duration of calculation on server (wall clock time): 1.149e-01s
 #ppchangedist calls: 0
--
Total time: 1.251e-01 seconds
Elapsed time is 0.125299 seconds.

In the first example, you see that number of bytes received by the server is exactly the size of
App, 1000*1000*8 bytes = 8 MB, and that the communication took 1.16 sec.

In the second example, the number of bytes received is 212 or 37,000 times smaller. These
212 bytes contain the instructions to the server that specify what operations need to be
performed. The penalty you pay in the first example is 1.16 sec of data transfer, which could
have been prevented by creating the variable App on the server instead of on the client.

The number of distribution changes reported by pptic/toc indicates how often Star-P®
needed to make a temporary change to the distribution of a variable, for example, from row to
column distributed, in order to perform a set of instructions. Distribution changes cost time
and should be avoided whenever possible when optimizing code for performance (note that
distribution changes become more expensive for slower interconnects between the
processors, e.g., clusters). In general, keeping the distributions of all variables aligned, i.e.,
all row distributed or all column distributed, prevents distribution changes and improves
performance.
Release 2.7 Star-P® Programming Guide for Use with MATLAB® 159

Basic Server Functions Summary
160 Star-P® Programming Guide for Use with MATLAB® Release 2.7

Chapter 7
Supported MATLAB® Functions

This chapter lists the MATLAB1 functions supported by Star-P®. The table in the section titled
“Data Parallel Functions Listed Alphabetically” lists the supported data parallel functions in
alphabetical order, while the tables in the section titled “Task-Parallel Functions Listed by
Default Platform TPE” list task-parallel functions for what is referred to as “ppeval()” mode.

Refer to the support web page, http://www.interactivesupercomputing.com/support, for the most
up-to-date function status.

Sparse matrices and functions operating on sparse matrices cannot currently be passed into
a ppeval call, but may be used within the function called by ppeval.

Data Parallel Functions Listed Alphabetically

Table 1 lists the MATLAB® functions available for Data-Parallel Computing with Star-P®
Release 2.7 x86/64 or Itanium-based Servers.

1. MATLAB® is a registered trademark of The MathWorks, Inc. Star-P® and the "star p" logo are
registered trademarks of Interactive Supercomputing, Inc. Other product or brand names are
trademarks or registered trademarks of their respective holders. ISC's products are not spon-
sored or endorsed by The MathWorks, Inc. or by any other trademark owner referred to in this
document.

Table 1 Data-Parallel Functions

MATLAB
Function

 Function Class Dense Array Sparse Array

abs elfun Yes Yes

acosd elfun Yes Yes

acos elfun Yes Yes

acosh elfun Yes Yes

acotd elfun Yes
Release 2.7 Star-P® Programming Guide for Use with MATLAB® 161

http://www.interactivesupercomputing.com

Data Parallel Functions Listed Alphabetically
acot elfun

acoth elfun

acscd elfun Yes Yes

acsc elfun

acsch elfun

all ops Yes Yes

and ops Yes Yes

angle elfun Yes Yes

any ops Yes Yes

asecd elfun Yes Yes

asec elfun

asech elfun

asind elfun Yes Yes

asin elfun Yes Yes

asinh elfun Yes Yes

atan2 elfun Yes Yes

atand elfun Yes

atan elfun Yes Yes

atanh elfun Yes Yes

blkdiag elmat Yes Yes

cat elmat Yes Yes

ceil elfun Yes Yes

cell datatypes Yes

chol matfun Yes

clpxpair elfun

colon ops

colperm sparfun Yes

Table 1 Data-Parallel Functions

MATLAB
Function

 Function Class Dense Array Sparse Array
162 Star-P® Programming Guide for Use with MATLAB® Release 2.7

Data Parallel Functions Listed Alphabetically
compan elmat Yes Yes

complex elfun Yes

cond matfun Yes

conj elfun Yes Yes

cosd elfun Yes Yes

cos elfun Yes Yes

cosh elfun Yes Yes

cotd elfun Yes

cot elfun

coth elfun

cov datafun Yes Yes

cscd elfun Yes

csc elfun

csch elfun

ctranspose (') ops Yes Yes

cumprod datafun Yes Yes

cumsum datafun Yes Yes

deal datatypes Yes Yes

diag elmat Yes Yes

diff datafun Yes

disp lang Yes Yes

display lang Yes Yes

dot specfun Yes Yes

double datatypes

eig matfun Yes

eigs sparfun Yes

ellipke specfun Yes

Table 1 Data-Parallel Functions

MATLAB
Function

 Function Class Dense Array Sparse Array
Release 2.7 Star-P® Programming Guide for Use with MATLAB® 163

Data Parallel Functions Listed Alphabetically
end lang Yes Yes

eq ops Yes Yes

exp elfun Yes Yes

expm1 elfun Yes Yes

eye elmat

factorial specfun

factor specfun

false elmat

fft2 datafun Yes

fft datafun Yes

fftshift datafun Yes

find elmat Yes Yes

fix elfun Yes Yes

flipdim elmat Yes

fliplr elmat Yes Yes

flipud elmat Yes Yes

fprintf iofun Yes Yes

freqspace elmat

full sparfun Yes Yes

ge ops Yes Yes

gt ops Yes Yes

hadamard elmat

hankel elmat Yes Yes

hess matfun Yes

hex2dec strfun

histc datafun Yes

horzcat ops Yes Yes

Table 1 Data-Parallel Functions

MATLAB
Function

 Function Class Dense Array Sparse Array
164 Star-P® Programming Guide for Use with MATLAB® Release 2.7

Data Parallel Functions Listed Alphabetically
ifft2 datafun Yes

ifft datafun Yes

ifftshift datafun Yes

imag elfun Yes Yes

ind2sub elmat Yes

inf elmat

invhilb elmat

inv matfun Yes

ipermute elmat Yes

isa datatypes Yes Yes

isempty elmat Yes Yes

isequal elmat Yes Yes

isequalwithequ
alnans

 elmat Yes Yes

isfinite elmat Yes Yes

isfloat datatypes Yes Yes

isinf elmat Yes Yes

islogical datatypes Yes Yes

isnan elmat Yes Yes

isnumeric datatypes Yes Yes

isprime specfun Yes Yes

isreal elfun Yes Yes

isspace strfun Yes Yes

issparse sparfun Yes Yes

kron ops Yes

ldivide (.\) ops Yes Yes

length elmat Yes Yes

le ops Yes Yes

Table 1 Data-Parallel Functions

MATLAB
Function

 Function Class Dense Array Sparse Array
Release 2.7 Star-P® Programming Guide for Use with MATLAB® 165

Data Parallel Functions Listed Alphabetically
linspace elmat

log10 elfun Yes Yes

log1p elfun Yes

log2 elfun Yes Yes

log elfun Yes Yes

logical datatypes Yes Yes

logspace elmat

lt ops Yes Yes

lu matfun Yes

magic elmat

max datafun Yes Yes

mean datafun Yes Yes

median datafun Yes Yes

meshgrid elmat Yes Yes

min datafun Yes Yes

minus (-) ops Yes Yes

mldivide (\) ops Yes Yes

mod elfun Yes Yes

mpower (^) ops Yes Yes

mrdivide (/) ops Yes Yes

mtimes (*) ops Yes Yes

nan elmat

nchoosek specfun

ndgrid elmat Yes

ndims elmat Yes Yes

ne ops Yes Yes

nnz sparfun Yes Yes

Table 1 Data-Parallel Functions

MATLAB
Function

 Function Class Dense Array Sparse Array
166 Star-P® Programming Guide for Use with MATLAB® Release 2.7

Data Parallel Functions Listed Alphabetically
normest matfun Yes

norm matfun Yes Yes

not ops Yes Yes

num2str strfun

numel elmat Yes Yes

ones elmat

or ops Yes Yes

orth matfun Yes

permute elmat Yes

pinv matfun Yes

planerot matfun Yes Yes

plus (+) ops Yes Yes

pol2cart specfun Yes

power (.^) ops Yes Yes

prod datafun Yes Yes

qr matfun Yes

rand elmat

randn elmat

rank matfun Yes

rdivide (./) ops Yes Yes

real elfun Yes Yes

rem elfun Yes Yes

repmat elmat

reshape elmat Yes Yes

rot90 elmat Yes Yes

round elfun Yes Yes

schur matfun Yes

Table 1 Data-Parallel Functions

MATLAB
Function

 Function Class Dense Array Sparse Array
Release 2.7 Star-P® Programming Guide for Use with MATLAB® 167

Data Parallel Functions Listed Alphabetically
secd elfun Yes

sec elfun

sech elfun

sign elfun Yes Yes

sind elfun Yes Yes

sin elfun Yes Yes

sinh elfun Yes Yes

size elmat Yes Yes

sort datafun Yes Yes

sortrows datafun Yes Yes

sparse sparfun Yes Yes

spaugment sparfun Yes Yes

spdiags sparfun Yes Yes

speye sparfun

spfun sparfun Yes

sph2cart specfun Yes

spones sparfun Yes

sprandn sparfun

sprand sparfun

sprintf strfun Yes Yes

sqrt elfun Yes Yes

sqrtm matfun Yes

squeeze elmat Yes

std datafun Yes Yes

sub2ind elmat Yes

subsasgn ops Yes Yes

subsindex ops Yes Yes

Table 1 Data-Parallel Functions

MATLAB
Function

 Function Class Dense Array Sparse Array
168 Star-P® Programming Guide for Use with MATLAB® Release 2.7

Data Parallel Functions Listed Alphabetically
subsref ops Yes Yes

sum datafun Yes Yes

svd matfun Yes

svds sparfun Yes Yes

tand elfun Yes Yes

tan elfun Yes Yes

tanh elfun Yes Yes

times (.*) ops Yes Yes

toeplitz elmat Yes Yes

trace matfun Yes Yes

transpose (.') ops Yes Yes

tril elmat Yes Yes

triu elmat Yes Yes

true elmat

uminus (-) ops Yes Yes

union ops Yes Yes

unique ops Yes Yes

unwrap elfun Yes

uplus (+) ops Yes Yes

vander elmat Yes Yes

var datafun Yes

vertcat ops Yes Yes

xor ops Yes Yes

zeros elmat

Table 1 Data-Parallel Functions

MATLAB
Function

 Function Class Dense Array Sparse Array
Release 2.7 Star-P® Programming Guide for Use with MATLAB® 169

Task-Parallel Functions Listed by Default Platform TPE
Task-Parallel Functions Listed by Default Platform TPE

Table 2 lists the MATLAB® functions available for Default Task Parallel Engine (TPE) for
SGI-Altix/Itanium-based Servers Star-P® Release 2.7 and optional TPE for x86/64-based
Servers.

Table 2 Default TPE Functions for Altix/Itanium

MATLAB Function Function Class

conv datafun

corrcoef datafun

cov datafun

cumprod datafun

cumsum datafun

cumtrapz datafun

deconv datafun

del2 datafun

detrend datafun

diff datafun

fft datafun

fft2 datafun

fftn datafun

fftshift datafun

filter datafun

filter2 datafun

gradient datafun

hist datafun

ifft datafun

ifftn datafun

max datafun

mean datafun

median datafun
170 Star-P® Programming Guide for Use with MATLAB® Release 2.7

Task-Parallel Functions Listed by Default Platform TPE
min datafun

prod datafun

sort datafun

sortrows datafun

std datafun

sum datafun

trapz datafun

var datafun

cast datatypes

cell datatypes

cell2mat datatypes

cell2struct datatypes

cellfun datatypes

class datatypes

deal datatypes

double datatypes

fieldnames datatypes

func2str datatypes

functions datatypes

getfield datatypes

isa datatypes

iscell datatypes

isfield datatypes

isnumeric datatypes

isstruct datatypes

logical datatypes

mat2cell datatypes

Table 2 Default TPE Functions for Altix/Itanium

MATLAB Function Function Class
Release 2.7 Star-P® Programming Guide for Use with MATLAB® 171

Task-Parallel Functions Listed by Default Platform TPE
num2cell datatypes

orderfields datatypes

rmfield datatypes

setfield datatypes

single datatypes

str2func datatypes

struct datatypes

struct2cell datatypes

abs elfun

acos elfun

acosh elfun

acot elfun

acoth elfun

acsc elfun

acsch elfun

angle elfun

asec elfun

asech elfun

asin elfun

asinh elfun

atan elfun

atan2 elfun

atanh elfun

ceil elfun

clpxpair elfun

complex elfun

conj elfun

Table 2 Default TPE Functions for Altix/Itanium

MATLAB Function Function Class
172 Star-P® Programming Guide for Use with MATLAB® Release 2.7

Task-Parallel Functions Listed by Default Platform TPE
cos elfun

cosh elfun

cot elfun

coth elfun

csc elfun

csch elfun

exp elfun

fix elfun

imag elfun

isreal elfun

log elfun

log10 elfun

log2 elfun

mod elfun

nextpow2 elfun

nthroot elfun

pow2 elfun

real elfun

rem elfun

round elfun

sec elfun

sech elfun

sign elfun

sin elfun

sind elfun

sinh elfun

sqrt elfun

tan elfun

Table 2 Default TPE Functions for Altix/Itanium

MATLAB Function Function Class
Release 2.7 Star-P® Programming Guide for Use with MATLAB® 173

Task-Parallel Functions Listed by Default Platform TPE
tanh elfun

unwrap elfun

blkdiag elmat

cat elmat

circshift elmat

compan elmat

diag elmat

eps elmat

eye elmat

find elmat

flipdim elmat

fliplr elmat

flipud elmat

flops elmat

hankel elmat

hilb elmat

i elmat

ind2sub elmat

intmax elmat

intmin elmat

invhilb elmat

ipermute elmat

isempty elmat

isequal elmat

isequalwithequalnans elmat

isinf elmat

isnan elmat

isscalar elmat

Table 2 Default TPE Functions for Altix/Itanium

MATLAB Function Function Class
174 Star-P® Programming Guide for Use with MATLAB® Release 2.7

Task-Parallel Functions Listed by Default Platform TPE
isvector elmat

j elmat

length elmat

linspace elmat

logspace elmat

meshgrid elmat

ndims elmat

numel elmat

ones elmat

pascal elmat

permute elmat

pi elmat

rand elmat

randn elmat

realmax elmat

realmax elmat

repmat elmat

reshape elmat

rosser elmat

rot90 elmat

rref elmat

shiftdim elmat

size elmat

squeeze elmat

sub2ind elmat

toeplitz elmat

tril elmat

triu elmat

Table 2 Default TPE Functions for Altix/Itanium

MATLAB Function Function Class
Release 2.7 Star-P® Programming Guide for Use with MATLAB® 175

Task-Parallel Functions Listed by Default Platform TPE
vander elmat

wilkinson elmat

zeros elmat

fminbnd funfun

fminsearch funfun

fzero funfun

inline funfun

ode23 funfun

ode45 funfun

quad funfun

quadl funfun

vectorize funfun

addpath general

ans general

beep general

brighten general

cd general

clear general

computer general

delete general

diary general

dir general

dos general

echo general

exit general

fileattrib general

Table 2 Default TPE Functions for Altix/Itanium

MATLAB Function Function Class
176 Star-P® Programming Guide for Use with MATLAB® Release 2.7

Task-Parallel Functions Listed by Default Platform TPE
format general

genpath general

getenv general

isdir general

ispc general

isunix general

load general

ls general

mex general

mkdir general

more general

pack general

path general

pwd general

quit general

rehash general

rmdir general

rmpath general

save general

savepath general

system general

type general

unix general

ver general

which general

who general

whos general

Table 2 Default TPE Functions for Altix/Itanium

MATLAB Function Function Class
Release 2.7 Star-P® Programming Guide for Use with MATLAB® 177

Task-Parallel Functions Listed by Default Platform TPE
clc iofun

csvread iofun

csvwrite iofun

fclose iofun

feof iofun

ferror iofun

fgetl iofun

fgets iofun

fileparts iofun

filesep iofun

fopen iofun

fprintf iofun

fread iofun

frewind iofun

fscanf iofun

fseek iofun

ftell iofun

fullfile iofun

fwrite iofun

home iofun

rename iofun

tar iofun

tempdir iofun

tempname iofun

textread iofun

untar iofun

unzip iofun

Table 2 Default TPE Functions for Altix/Itanium

MATLAB Function Function Class
178 Star-P® Programming Guide for Use with MATLAB® Release 2.7

Task-Parallel Functions Listed by Default Platform TPE
assignin lang

break lang

builtin lang

case lang

catch lang

continue lang

disp lang

else lang

elseif lang

end lang

error lang

eval lang

evalin lang

exist lang

feval lang

for lang

global lang

if lang

input lang

inputname lang

isglobal lang

iskeyword lang

isvarname lang

keyboard lang

lasterr lang

lastwarn lang

mislocked lang

mlock lang

Table 2 Default TPE Functions for Altix/Itanium

MATLAB Function Function Class
Release 2.7 Star-P® Programming Guide for Use with MATLAB® 179

Task-Parallel Functions Listed by Default Platform TPE
munlock lang

nargchk lang

nargin lang

nargout lang

otherwise lang

persistent lang

return lang

switch lang

try lang

varargin lang

varargout lang

warning lang

while lang

MATLAB Function Function Class

balance matfun

chol matfun

cond matfun

det matfun

eig matfun

expm matfun

hess matfun

inv matfun

logm matfun

lu matfun

norm matfun

null matfun

Table 2 Default TPE Functions for Altix/Itanium

MATLAB Function Function Class
180 Star-P® Programming Guide for Use with MATLAB® Release 2.7

Task-Parallel Functions Listed by Default Platform TPE
orth matfun

pinv matfun

qr matfun

qz matfun

rank matfun

schur matfun

sqrtm matfun

svd matfun

trace matfun

MATLAB Function Function Class

all ops

and ops

any ops

bitand ops

bitcmp ops

bitget ops

bitmax ops

bitor ops

bitset ops

bitshift ops

bitxor ops

eq ops

ge ops

gt ops

horzcat ops

intersect ops

Table 2 Default TPE Functions for Altix/Itanium

MATLAB Function Function Class
Release 2.7 Star-P® Programming Guide for Use with MATLAB® 181

Task-Parallel Functions Listed by Default Platform TPE
ismember ops

kron ops

ldivide (.\) ops

le ops

lt ops

minus (-) ops

mldivide (\) ops

mpower (^) ops

mrdivide (/) ops

mtimes (*) ops

ne ops

not ops

or ops

plus (+) ops

power (.^) ops

rdivide (./) ops

setdiff ops

setxor ops

times (.*) ops

uminus (-) ops

union ops

unique ops

uplus (+) ops

vertcat ops

xor ops

interp1 polyfun

interp2 polyfun

Table 2 Default TPE Functions for Altix/Itanium

MATLAB Function Function Class
182 Star-P® Programming Guide for Use with MATLAB® Release 2.7

Task-Parallel Functions Listed by Default Platform TPE
interpft polyfun

mkpp polyfun

pchip polyfun

poly polyfun

polyarea polyfun

polyder polyfun

polyfit polyfun

polyval polyfun

polyvalm polyfun

ppval polyfun

residue polyfun

roots polyfun

spline polyfun

ss2tf polyfun

unmkpp polyfun

colamd sparfun

colperm sparfun

dmperm sparfun

etree sparfun

etreeplot sparfun

full sparfun

gplot sparfun

issparse sparfun

luinc sparfun

nnz sparfun

nonzeros sparfun

nzmax sparfun

Table 2 Default TPE Functions for Altix/Itanium

MATLAB Function Function Class
Release 2.7 Star-P® Programming Guide for Use with MATLAB® 183

Task-Parallel Functions Listed by Default Platform TPE
randperm sparfun

spalloc sparfun

sparse sparfun

spconvert sparfun

speye sparfun

spfun sparfun

spones sparfun

spparms sparfun

sprand sparfun

sprandn sparfun

sprandsym sparfun

spy sparfun

symamd sparfun

airy specfun

besselh specfun

besseli specfun

besselj specfun

besselk specfun

bessely specfun

beta specfun

betainc specfun

betain specfun

cart2pol specfun

cart2sph specfun

cross specfun

dot specfun

erf specfun

Table 2 Default TPE Functions for Altix/Itanium

MATLAB Function Function Class
184 Star-P® Programming Guide for Use with MATLAB® Release 2.7

Task-Parallel Functions Listed by Default Platform TPE
erfc specfun

erfinv specfun

gamma specfun

gammainc specfun

gammaln specfun

gcd specfun

hsv2rgb specfun

lcm specfun

legendre specfun

perms specfun

pol2cart specfun

primes specfun

rgb2hsv specfun

sph2cart specfun

base2dec strfun

bin2dec strfun

blanks strfun

cellstr strfun

char strfun

deblank strfun

dec2base strfun

dec2bin strfun

dec2hex strfun

findstr strfun

hex2dec strfun

hex2num strfun

int2str strfun

Table 2 Default TPE Functions for Altix/Itanium

MATLAB Function Function Class
Release 2.7 Star-P® Programming Guide for Use with MATLAB® 185

Task-Parallel Functions Listed by Default Platform TPE
iscellstr strfun

ischar strfun

isletter strfun

isspace strfun

isstr strfun

lower strfun

mat2str strfun

num2str strfun

regexp strfun

regexpi strfun

regexprep strfun

setstr strfun

sprintf strfun

sscanf strfun

str2double strfun

str2mat strfun

str2num strfun

strcat strfun

strcmp strfun

strcmpi strfun

strfind strfun

strjust strfun

strmatch strfun

strncmp strfun

strncmpi strfun

strrep strfun

strtok strfun

strtrim strfun

Table 2 Default TPE Functions for Altix/Itanium

MATLAB Function Function Class
186 Star-P® Programming Guide for Use with MATLAB® Release 2.7

Task-Parallel Functions Listed by Default Platform TPE
Table 3 lists the MATLAB® functions available for Star-P® Release 2.7 Default Task-Parallel
Engine (TPE) for x86/64-based Servers.

strvcat strfun

upper strfun

calendar timefun

clock timefun

cputime timefun

date timefun

datenum timefun

datestr timefun

datevec timefun

eomday timefun

etime timefun

now timefun

pause timefun

weekday timefun

iqr timeseries

Table 3 Default TPE Functions for x86/64

MATLAB Function Function Class

blkdiag Arrays and Matrices

compan Arrays and Matrices

cross Arrays and Matrices

cumprod Arrays and Matrices

cumsum Arrays and Matrices

diag Arrays and Matrices

dot Arrays and Matrices

Table 2 Default TPE Functions for Altix/Itanium

MATLAB Function Function Class
Release 2.7 Star-P® Programming Guide for Use with MATLAB® 187

Task-Parallel Functions Listed by Default Platform TPE
eye Arrays and Matrices

full Arrays and Matrices

hadamard Arrays and Matrices

hankel Arrays and Matrices

horzcat Arrays and Matrices

ind2sub Arrays and Matrices

ipermute Arrays and Matrices

issparse Arrays and Matrices

length Arrays and Matrices

logspace Arrays and Matrices

magic Arrays and Matrices

ndims Arrays and Matrices

nnz Arrays and Matrices

nonzeros Arrays and Matrices

numel Arrays and Matrices

ones Arrays and Matrices

pascal Arrays and Matrices

permute Arrays and Matrices

pinv Arrays and Matrices

rand Arrays and Matrices

randn Arrays and Matrices

repmat Arrays and Matrices

reshape Arrays and Matrices

rosser Arrays and Matrices

rot90 Arrays and Matrices

shiftdim Arrays and Matrices

size Arrays and Matrices

squeeze Arrays and Matrices

Table 3 Default TPE Functions for x86/64

MATLAB Function Function Class
188 Star-P® Programming Guide for Use with MATLAB® Release 2.7

Task-Parallel Functions Listed by Default Platform TPE
sub2ind Arrays and Matrices

sum Arrays and Matrices

toeplitz Arrays and Matrices

vander Arrays and Matrices

vectorize Arrays and Matrices

vertcat Arrays and Matrices

wilkinson Arrays and Matrices

zeros Arrays and Matrices

conv2 Data Analysis

cov Data Analysis

cumtrapz Data Analysis

del2 Data Analysis

detrend Data Analysis

diff Data Analysis

fft Data Analysis

fft2 Data Analysis

fftn Data Analysis

fftshift Data Analysis

filter Data Analysis

filter2 Data Analysis

gradient Data Analysis

hist Data Analysis

histc Data Analysis

ifft Data Analysis

ifft2 Data Analysis

ifftn Data Analysis

Table 3 Default TPE Functions for x86/64

MATLAB Function Function Class
Release 2.7 Star-P® Programming Guide for Use with MATLAB® 189

Task-Parallel Functions Listed by Default Platform TPE
ifftshift Data Analysis

issorted Data Analysis

mean Data Analysis

median Data Analysis

mldivide Data Analysis

mrdivide Data Analysis

quad Data Analysis

quadl Data Analysis

randperm Data Analysis

rcond Data Analysis

sort Data Analysis

sortrows Data Analysis

std Data Analysis

trapz Data Analysis

var Data Analysis

cat Data Types

cell Data Types

cell2mat Data Types

cell2struct Data Types

cellfun Data Types

cellstr Data Types

char Data Types

class Data Types

deal Data Types

dec2base Data Types

dec2bin Data Types

Table 3 Default TPE Functions for x86/64

MATLAB Function Function Class
190 Star-P® Programming Guide for Use with MATLAB® Release 2.7

Task-Parallel Functions Listed by Default Platform TPE
dec2hex Data Types

fieldnames Data Types

findstr Data Types

getfield Data Types

hex2dec Data Types

int16 Data Types

int2str Data Types

int32 Data Types

int64 Data Types

int8 Data Types

intmax Data Types

intmin Data Types

isa Data Types

iscell Data Types

iscellstr Data Types

ischar Data Types

isequal Data Types

isequalwithequalnans Data Types

isfield Data Types

isfinite Data Types

isfloat Data Types

isinf Data Types

isinteger Data Types

islogical Data Types

isnan Data Types

isnumeric Data Types

isreal Data Types

isscalar Data Types

Table 3 Default TPE Functions for x86/64

MATLAB Function Function Class
Release 2.7 Star-P® Programming Guide for Use with MATLAB® 191

Task-Parallel Functions Listed by Default Platform TPE
isstr Data Types

isstruct Data Types

isvector Data Types

mat2cell Data Types

mat2str Data Types

num2cell Data Types

num2hex Data Types

num2str Data Types

orderfields Data Types

rmfield Data Types

setfield Data Types

setstr Data Types

str2double Data Types

str2mat Data Types

str2num Data Types

struct Data Types

struct2cell Data Types

subsasgn Data Types

subsref Data Types

substruct Data Types

uint16 Data Types

uint32 Data Types

uint64 Data Types

uint8 Data Types

FALSE Data Types

TRUE Data Types

calendar Date and Time

Table 3 Default TPE Functions for x86/64

MATLAB Function Function Class
192 Star-P® Programming Guide for Use with MATLAB® Release 2.7

Task-Parallel Functions Listed by Default Platform TPE
clock Date and Time

cputime Date and Time

date Date and Time

datenum Date and Time

datevec Date and Time

eomday Date and Time

etime Date and Time

now Date and Time

tic Date and Time

toc Date and Time

weekday Date and Time

addpath Desktop Tools

cd Desktop Tools

chdir Desktop Tools

clear Desktop Tools

delete Desktop Tools

dir Desktop Tools

dos Desktop Tools

fileattrib Desktop Tools

fileparts Desktop Tools

filesep Desktop Tools

format Desktop Tools

fullfile Desktop Tools

getenv Desktop Tools

isdir Desktop Tools

ispc Desktop Tools

Table 3 Default TPE Functions for x86/64

MATLAB Function Function Class
Release 2.7 Star-P® Programming Guide for Use with MATLAB® 193

Task-Parallel Functions Listed by Default Platform TPE
isunix Desktop Tools

load Desktop Tools

mfilename Desktop Tools

mkdir Desktop Tools

path Desktop Tools

pathsep Desktop Tools

pwd Desktop Tools

rmdir Desktop Tools

rmpath Desktop Tools

save Desktop Tools

setenv Desktop Tools

system Desktop Tools

tempdir Desktop Tools

tempname Desktop Tools

unix Desktop Tools

ver Desktop Tools

version Desktop Tools

which Desktop Tools

who Desktop Tools

whos Desktop Tools

abs Elementary Math

acos Elementary Math

acosd Elementary Math

acosh Elementary Math

acot Elementary Math

acotd Elementary Math

acoth Elementary Math

Table 3 Default TPE Functions for x86/64

MATLAB Function Function Class
194 Star-P® Programming Guide for Use with MATLAB® Release 2.7

Task-Parallel Functions Listed by Default Platform TPE
acsc Elementary Math

acscd Elementary Math

acsch Elementary Math

airy Elementary Math

all Elementary Math

and Elementary Math

angle Elementary Math

any Elementary Math

asec Elementary Math

asecd Elementary Math

asech Elementary Math

asin Elementary Math

asind Elementary Math

asinh Elementary Math

atan Elementary Math

atan2 Elementary Math

atand Elementary Math

atanh Elementary Math

besselh Elementary Math

besseli Elementary Math

besselj Elementary Math

besselk Elementary Math

bessely Elementary Math

beta Elementary Math

betainc Elementary Math

betaln Elementary Math

bitand Elementary Math

bitcmp Elementary Math

Table 3 Default TPE Functions for x86/64

MATLAB Function Function Class
Release 2.7 Star-P® Programming Guide for Use with MATLAB® 195

Task-Parallel Functions Listed by Default Platform TPE
bitget Elementary Math

bitmax Elementary Math

bitor Elementary Math

bitset Elementary Math

bitshift Elementary Math

bitxor Elementary Math

complex Elementary Math

conj Elementary Math

conv Elementary Math

cos Elementary Math

cosd Elementary Math

cosh Elementary Math

cot Elementary Math

cotd Elementary Math

coth Elementary Math

cplxpair Elementary Math

csc Elementary Math

cscd Elementary Math

csch Elementary Math

ctranspose Elementary Math

deconv Elementary Math

eps Elementary Math

eq Elementary Math

erf Elementary Math

erfc Elementary Math

erfcx Elementary Math

erfinv Elementary Math

exp Elementary Math

Table 3 Default TPE Functions for x86/64

MATLAB Function Function Class
196 Star-P® Programming Guide for Use with MATLAB® Release 2.7

Task-Parallel Functions Listed by Default Platform TPE
factor Elementary Math

factorial Elementary Math

find Elementary Math

fix Elementary Math

flipdim Elementary Math

fliplr Elementary Math

flipud Elementary Math

floor Elementary Math

gamma Elementary Math

gammainc Elementary Math

gammaln Elementary Math

gcd Elementary Math

ge Elementary Math

gt Elementary Math

hypot Elementary Math

i Elementary Math

imag Elementary Math

inf Elementary Math

intersect Elementary Math

ipermute Elementary Math

ismember Elementary Math

isprime Elementary Math

j Elementary Math

lcm Elementary Math

ldivide Elementary Math

le Elementary Math

legendre Elementary Math

linspace Elementary Math

Table 3 Default TPE Functions for x86/64

MATLAB Function Function Class
Release 2.7 Star-P® Programming Guide for Use with MATLAB® 197

Task-Parallel Functions Listed by Default Platform TPE
log Elementary Math

log10 Elementary Math

log1p Elementary Math

log2 Elementary Math

lt Elementary Math

max Elementary Math

min Elementary Math

minus Elementary Math

mod Elementary Math

mpower Elementary Math

nan Elementary Math

nchoosek Elementary Math

ne Elementary Math

nextpow2 Elementary Math

not Elementary Math

nthroot Elementary Math

or Elementary Math

perms Elementary Math

pi Elementary Math

plus Elementary Math

polyder Elementary Math

polyfit Elementary Math

polyval Elementary Math

polyvalm Elementary Math

pow2 Elementary Math

power Elementary Math

primes Elementary Math

prod Elementary Math

Table 3 Default TPE Functions for x86/64

MATLAB Function Function Class
198 Star-P® Programming Guide for Use with MATLAB® Release 2.7

Task-Parallel Functions Listed by Default Platform TPE
rat Elementary Math

rdivide Elementary Math

real Elementary Math

realmax Elementary Math

realmin Elementary Math

rem Elementary Math

residue Elementary Math

round Elementary Math

sec Elementary Math

secd Elementary Math

sech Elementary Math

setdiff Elementary Math

setxor Elementary Math

sign Elementary Math

sin Elementary Math

sind Elementary Math

sinh Elementary Math

sqrt Elementary Math

tan Elementary Math

tand Elementary Math

tanh Elementary Math

times Elementary Math

transpose Elementary Math

union Elementary Math

unique Elementary Math

unwrap Elementary Math

uplus Elementary Math

xor Elementary Math

Table 3 Default TPE Functions for x86/64

MATLAB Function Function Class
Release 2.7 Star-P® Programming Guide for Use with MATLAB® 199

Task-Parallel Functions Listed by Default Platform TPE

csvread FileIO

csvwrite FileIO

disp FileIO

dlmread FileIO

dlmwrite FileIO

fclose FileIO

feof FileIO

ferror FileIO

fgetl FileIO

fgets FileIO

fopen FileIO

fprintf FileIO

fputs FileIO

fread FileIO

frewind FileIO

fscanf FileIO

fseek FileIO

ftell FileIO

fwrite FileIO

ls FileIO

contour Graphics

contourc Graphics

inpolygon Graphics

cart2pol Interpolation and Computational
Geometry

Table 3 Default TPE Functions for x86/64

MATLAB Function Function Class
200 Star-P® Programming Guide for Use with MATLAB® Release 2.7

Task-Parallel Functions Listed by Default Platform TPE
cart2sph Interpolation and Computational
Geometry

interp1 Interpolation and Computational
Geometry

interp2 Interpolation and Computational
Geometry

interpft Interpolation and Computational
Geometry

meshgrid Interpolation and Computational
Geometry

mkpp Interpolation and Computational
Geometry

ndgrid Interpolation and Computational
Geometry

pchip Interpolation and Computational
Geometry

pol2cart Interpolation and Computational
Geometry

ppval Interpolation and Computational
Geometry

pwch Interpolation and Computational
Geometry

sph2cart Interpolation and Computational
Geometry

spline Interpolation and Computational
Geometry

unmkpp Interpolation and Computational
Geometry

accumarray Linear Algebra

balance Linear Algebra

chol Linear Algebra

cholupdate Linear Algebra

Table 3 Default TPE Functions for x86/64

MATLAB Function Function Class
Release 2.7 Star-P® Programming Guide for Use with MATLAB® 201

Task-Parallel Functions Listed by Default Platform TPE
circshift Linear Algebra

cond Linear Algebra

det Linear Algebra

eig Linear Algebra

ellipke Linear Algebra

expm Linear Algebra

hess Linear Algebra

hilb Linear Algebra

inv Linear Algebra

invhilb Linear Algebra

kron Linear Algebra

linsolve Linear Algebra

logm Linear Algebra

lu Linear Algebra

mpower Linear Algebra

mtimes Linear Algebra

norm Linear Algebra

null Linear Algebra

ordeig Linear Algebra

orth Linear Algebra

planerot Linear Algebra

poly Linear Algebra

qr Linear Algebra

qrdelete Linear Algebra

qrinsert Linear Algebra

qz Linear Algebra

rank Linear Algebra

roots Linear Algebra

Table 3 Default TPE Functions for x86/64

MATLAB Function Function Class
202 Star-P® Programming Guide for Use with MATLAB® Release 2.7

Task-Parallel Functions Listed by Default Platform TPE
rref Linear Algebra

schur Linear Algebra

sqrtm Linear Algebra

ss2tf Linear Algebra

svd Linear Algebra

trace Linear Algebra

tril Linear Algebra

triu Linear Algebra

ode23 ODE

ode45 ODE

ode78 ODE

odeset ODE

' Operators and Special Characters

- Operators and Special Characters

! Operators and Special Characters

% Operators and Special Characters

%{ %} Operators and Special Characters

& Operators and Special Characters

&& Operators and Special Characters

() Operators and Special Characters

* Operators and Special Characters

, Operators and Special Characters

. Operators and Special Characters

.' Operators and Special Characters

Table 3 Default TPE Functions for x86/64

MATLAB Function Function Class
Release 2.7 Star-P® Programming Guide for Use with MATLAB® 203

Task-Parallel Functions Listed by Default Platform TPE
.() Operators and Special Characters

.* Operators and Special Characters

.. Operators and Special Characters

... Operators and Special Characters

./ Operators and Special Characters

.\ Operators and Special Characters

.^ Operators and Special Characters

/ Operators and Special Characters

: Operators and Special Characters

; Operators and Special Characters

@ Operators and Special Characters

[] Operators and Special Characters

\ Operators and Special Characters

^ Operators and Special Characters

{ } Operators and Special Characters

| Operators and Special Characters

|| Operators and Special Characters

~ Operators and Special Characters

~= Operators and Special Characters

+ Operators and Special Characters

< Operators and Special Characters

<= Operators and Special Characters

= Operators and Special Characters

== Operators and Special Characters

> Operators and Special Characters

>= Operators and Special Characters

Table 3 Default TPE Functions for x86/64

MATLAB Function Function Class
204 Star-P® Programming Guide for Use with MATLAB® Release 2.7

Task-Parallel Functions Listed by Default Platform TPE
assert Programming

cast Programming

else Programming

elseif Programming

end Programming

error Programming

exist Programming

feval Programming

for Programming

func2str Programming

global Programming

if Programming

lasterr Programming

lasterror Programming

lastwarn Programming

nargchk Programming

nargin Programming

nargout Programming

persistent Programming

rethrow Programming

return Programming

str2func Programming

switch Programming

try Programming

typecast Programming

varargin Programming

varargout Programming

warning Programming

Table 3 Default TPE Functions for x86/64

MATLAB Function Function Class
Release 2.7 Star-P® Programming Guide for Use with MATLAB® 205

Task-Parallel Functions Listed by Default Platform TPE
while Programming

blanks String Functions

deblank String Functions

isletter String Functions

isspace String Functions

lower String Functions

regexp String Functions

regexprep String Functions

sprintf String Functions

sscanf String Functions

strcat String Functions

strcmp String Functions

strcmpi String Functions

strfind String Functions

strjust String Functions

strmatch String Functions

strncmp String Functions

strncmpi String Functions

strrep String Functions

strtok String Functions

strtrim String Functions

strvcat String Functions

upper String Functions

Table 3 Default TPE Functions for x86/64

MATLAB Function Function Class
206 Star-P® Programming Guide for Use with MATLAB® Release 2.7

Appendix A
Application Examples

Application Example: Image Processing Algorithm

The application examples in this section show pattern matching for an input image and a
target image using the Fourier transform of the image, or, in basic terms, Fourier pattern
matching.

The program performs Fourier analysis of an input image and a target image. This analysis
tries to locate the target image within the input image. Correlation peaks show where the
target image exists. The output matrix shows where high correlation exists in the Fourier
plane. In other words, X marks the spot.

How the Analysis Is Done

The analysis in this simplified application takes the transform of the input and target images,
multiplies the elements of the transforms, and then transforms the product back. This results
in correlation peaks located where the target image is located within the input image. Since
the image is in color, the processing is performed within three different color spaces,
correlation matches occur three times. Strong peaks exist in the image along with the
possibility of some noise. To further data reduce the image, a threshold is used which
reduces the information to a two dimensional (2D) binary map. The image of the 2D binary
map reduces the three color space images into a single binary map indicating the locations of
the target image. The location of the ones (1) indicate the position of the target image within
the input image.In this example, the ones exist in four separate clusters and the centroid of
each cluster indicates the center location of the target image.
Release 2.7 Star-P® Programming Guide for Use with MATLAB® 207

Application Examples
Application Examples

There are three application examples given in this section:

• An example not using Star-P®, see "Application Example Not Using Star-P®".

• An example using *p to distribute the computation, see "Application Example Using
Star-P®".

• An example using ppeval to distribute the computation see "Application Example
Using ppeval".

Images For Application Examples

The images used for the examples are shown in the figures below.

Figure A-1: Target Image

Figure A-2: Input Image

M Files for the Application Examples

There are two .m files used in each example. The files used for each example are as follows:

• Without Star-P® Example uses:

• patmatch_colordemo_noStarP.m
208 Star-P® Programming Guide for Use with MATLAB® Release 2.7

Application Examples
• patmatch_calc.m

• With Star-P® Example uses:

• patmatch_colordemo_StarP.m

• patmatch_calc.m

• ppeval example uses:

• patmatch_color_ppeval.m

• patmatch_calc.m

Note: The patmatch_calc.m file is the same for all three examples.

M files are text files which typically contain the following information:

Application Example Not Using Star-P®

The following provides the actual flow for this application example where Star-P® is not used.
The M files associated with this example are shown immediately after this table.

File Element Description

Function definition
line

Informs MATLAB that the M-file
contains a function. This line
defines function number and the
number and order of input and
output arguments

Function or script
body

Program code that performs the
actual computations and assigns
values to any output arguments

Comments Text in the body of the program that
explains the internal workings of
the program

Step Description

1 The input image Figure A-2: is separated into Hue, Saturation
and Value (HSV).

2 The image is tiled and replicated. The color constituent parts are
each replicated in a tiling fashion to make a larger H, S, and V
images.
Release 2.7 Star-P® Programming Guide for Use with MATLAB® 209

Application Examples

patmatch_color_noStarP.m File

The following is the sample file that contains the program code for the application example.
The numbers on the left correspond to the table in the previous section.

>> type patmatch_colordemo_noStarP
% Setup the variables
imr = 1; imc = 1; % Set number of image tiled in rows and columns
target = 'Twhite.PNG';
img = '500x500.PNG';

3 A correlation calculation is performed on the HSV components of
the input and target images. The patchmatch_calc.m file is
called. A pattern matching calculation is used. This particular
function is called for each of the three HSV images.

a. The function correlates the input and target image by
padding the target image, which is assumed to be a
smaller image. It is padded with bright regions or ones
(1).

• 1 represents background

• 0 represents lack of background

Basically, the size input image is found and then
the target image is padded to that size. The
padded image is shifted into Fourier space
assuring accuracy.

b. The actual correlation is done by multiplying the
Fourier transform input image times the complex
conjugate of the target image. Next it takes the inverse
transform of the two images and that creates the
amplitude and phase of the correlation. To create the
observable image, this product image is multiplied by
its complex conjugate completing the correlation.

c. Once the correlation calculation is complete, the
correlation image is scaled between zero and one for
each of the HSV components.

4 A threshold operation is performed to find the target locations
within the input image. The operation is performed for each of the
HSV components and is done empirically to achieve the display
result through a map of the input image.

5 Displays the results which is a fully reduced, binary map of the
target image location.

Step Description
210 Star-P® Programming Guide for Use with MATLAB® Release 2.7

Application Examples

Read in RGB
data, convert
to HSV

1

Image is
tiled and
replicated

2

Calculate the
correlation on
each of HSV

3

Perform the
threshold

4

Display the
results

5

components

Set up and
pad for
correlation

3a

Calculate the
correlation

3b
thres = 0.85;
% Load the data, comes in RGB, transfer to HSV space
a = rgb2hsv(imread(img)); % Get the image containing targets
b = rgb2hsv(imread(target)); % Get the filter mask
% Setup the input image tiling problem
if imr > 1 || imc > 1
 a = repmat(a,imr,imc);
end
% Perform correlation calculation in HSV space
d = zeros(size(a));
for i = 1:3
 d(:,:,i) = patmatch_calc(a(:,:,i),b(:,:,i));
end
% Threshold for finding target within input image
e = (1-d(:,:,2)) > 0.5 & d(:,:,3) > thres;
%Display the result
figure(1);
imagesc(hsv2rgb(a)); colormap jet; title('Input Image');
figure(2);
imagesc(hsv2rgb(b)); colormap jet; title('Filter Pattern');
figure(3);
imagesc(d(:,:,1)); colormap jet; title('Correlation H');
figure(4);
imagesc(1-d(:,:,2)); colormap jet; title('Correlation S');
figure(5);
imagesc(d(:,:,3)); colormap jet; title('Correlation V');
figure(6);
imagesc(e); colormap gray; title('Threshold Correlation');

patmatch_calc.m

This is the contents of the calculation file that is called by patmatch_color_noStarP.m,
patmatch_color_StarP.m, and patmatch_color_ppeval.m.

>> type patmatch_calc.m
function corr = patmatch_calc(a,b)
%
% Pad the target input with bright areas to the size of the input image
%
[I,J]=ind2sub(size(b),1:numel(b));
pad = ones(size(a));
% Pad the target with ones, bright, to size of 'a'
pad(sub2ind(size(pad),floor(size(pad,1)/2)+(I-floor(size(b,1)/2)), ...
 floor(size(pad,2)/2)+(J-floor(size(b,2)/2))))=b;
% Adjust the filter to the FFT space
pad = fftshift(pad);
% Calculate the pattern match of input image a with the target filter b
% Multiply Fourier transform of the input and target
c = ifft2(fft2(a).*conj(fft2(pad)));
% Measured optical intensity
d = c.*conj(c);
% Normalize the image to the tallest peak
Release 2.7 Star-P® Programming Guide for Use with MATLAB® 211

Application Examples

Scale between
0 and 1

3c

Image is
transferred
to back-end

1

corr = (d-min(min(d)))/max(max(d-min(min(d))));

Application Example Using Star-P®

The following provides the actual flow for this application example using Star-P®. The M files
associated with this example are shown immediately after this table.

patmatch_colordemo_StarP.m File

The following is the sample file that contains the program code for the application example.
The numbers on the left correspond to the table in the previous section. Only the differences
from the "Application Example Not Using Star-P®" are described.

>> type patmatch_colordemo_StarP
% Setup the variables
imr = 1; imc = 1; % Set number of image tiled in rows and columns
target = 'Twhite.JPG';
img = '500x500.JPG';
thres = 0.85;
% Load the data, comes in RGB, transfer to HSV space
a = rgb2hsv(imread(img)); % Get the image containing targets
b = rgb2hsv(imread(target)); % Get the filter mask
% Transfer image data to the server

Step Description

1 The input image is loaded and separated as previously described
in "Application Example Not Using Star-P®". The main difference
is that each of these images are transferred to the backend
(server or HPC). From this point every subsequent operation or
computation that occurs will occur on the backend.

2 This tiled image is now created on the backend. See "Application
Example Not Using Star-P®".

3 The correlation calculation as described previously for
"Application Example Not Using Star-P®" is performed on the
backend.

The patmatch_calc.m file is identical as for "Application
Example Not Using Star-P®" except the calculation is performed
on the backend. No changes required.

4 The threshold operation is performed on the backend (see
"Application Example Not Using Star-P®").

5 The ppfront function moves the data to the frontend or client for
viewing. (see "Application Example Not Using Star-P®").
212 Star-P® Programming Guide for Use with MATLAB® Release 2.7

Application Examples

Image is
transferred
from back-end

5

a = ppback(a);
% Setup the input image tilling problem
if imr > 1 | imc > 1
 a = repmat(a,imr,imc);
end
% Perform correlation calculation in HSV space
d = zeros(size(a));
for i = 1:3
 d(:,:,i) = patmatch_calc(a(:,:,i),b(:,:,i));
end
% Threshold for finding target within input image
e = (1-d(:,:,2)) > 0.5 & d(:,:,3) > thres;
% Transfer results to the client
a = ppfront(a);
d = ppfront(d);
e = ppfront(e);
% Display the result
figure(1);
imagesc(hsv2rgb(a)); colormap jet; title('Input Image');
figure(2);
imagesc(hsv2rgb(b)); colormap jet; title('Filter Pattern');
figure(3);
imagesc(d(:,:,1)); colormap jet; title('Correlation H');
figure(4);
imagesc(1-d(:,:,2)); colormap jet; title('Correlation S');
figure(5);
imagesc(d(:,:,3)); colormap jet; title('Correlation V');
figure(6);
imagesc(e); colormap gray; title('Threshold Correlation');

Application Example Using ppeval

The following provides the actual flow for this application example using ppeval. The M files
associated with this example are shown immediately after the table.

About ppeval

ppeval executes embarrassingly parallel operations in a task parallel mode. The tasks are
completely independent and are computed individually, with access only to local data. For
example, if there are four function evaluations to be computed and Star-P® has four
processors allocated, ppeval takes the function to be evaluated and sends it to each of the
four processors for calculation.

About the ppeval Example

This function takes the HSV components for the input and target images and calculates all
the correlations for each of these components simultaneously.
Release 2.7 Star-P® Programming Guide for Use with MATLAB® 213

Application Examples

Tiling is not
included. It
limits

2

performance
gains.

Correlation
calculations
performed on

3

three backend
processors
The technical explanation of the computation is identically the same as the previous example
and is eliminated for brevity. The key difference in using the patmatch_calc function is the
setup of ppeval that calls this function.

In the case of item 5, ppeval calls patmach_calc with the input image a and target image b.
The parallelization is performed with the split function that breaks the input and target images
into their respective HSV components. The split in each case is along the 3rd dimension. If
you have three processors, processor 1 gets the H component, processor 2 gets the S
component, and processor 3 gets the V component.

When ppeval executes, patmatch_calc is executed simultaneously on three processors.

patmatch_color_ppeval.m

The following is the sample file that contains the program code for the application example.
The numbers on the left correspond to the table in the previous section. Only the differences
from the "Application Example Not Using Star-P®" are described.

>> type patmatch_colordemo_ppeval
% Setup the variables
imr = 1; imc = 1; % Set number of image tiled in rows and columns
target = 'Twhite.JPG';
img = '500x500.JPG';
thres = 0.85;
% Load the data, comes in RGB, transfer to HSV space
a = rgb2hsv(imread(img)); % Get the image containing targets
b = rgb2hsv(imread(target)); % Get the filter mask
% Setup the input image tiling problem

Step Description

1 The operation is the same as described for the previous two
examples.

2 Not included for the ppeval because tiling to larger images or
working with larger input images on a single processor limits the
performance gains achieved by single processor calculation. In
other words, single processor calculations provide performance
on small data sizes.

3 The correlation calculation as described for the previous two
examples is performed on an individual processor on the
backend.

4 The operation is the same as described for the previous two
examples.

5 The operation is the same as described for the previous two
examples.
214 Star-P® Programming Guide for Use with MATLAB® Release 2.7

Application Examples
if imr > 1 | imc > 1
 a = repmat(a,imr,imc);
end
% Perform correlation calculation in HSV space
d = ppeval('patmatch_calc',split(a,3),split(b,3));
% Threshold for finding target within input image
e = (1-d(:,:,2)) > 0.5 & d(:,:,3) > thres;
% Transfer results to the client
d = ppfront(d);
e = ppfront(e);
% Display the result
figure(1);
imagesc(hsv2rgb(a)); colormap jet; title('Input Image');
figure(2);
imagesc(hsv2rgb(b)); colormap jet; title('Filter Pattern');
figure(3);
imagesc(d(:,:,1)); colormap jet; title('Correlation H');
figure(4);
imagesc(1-d(:,:,2)); colormap jet; title('Correlation S');
figure(5);
imagesc(d(:,:,3)); colormap jet; title('Correlation V');
figure(6);
imagesc(e); colormap gray; title('Threshold Correlation');
Release 2.7 Star-P® Programming Guide for Use with MATLAB® 215

Application Examples
216 Star-P® Programming Guide for Use with MATLAB® Release 2.7

Appendix B
Solving Large Sparse Matrix and Combinatorial
Problems with Star-P®

This chapter introduces a mode of thinking about a large class of combinatorial problems.
Star-P® can be considered as a potential tool whenever you are faced with a discrete
problem where quantitative information is extracted from a data structure such as those
found on networks or in databases.

Sparse matrix operations are widely used in many contexts, but what is less well known is
that these operations are powerfully expressive for formulating and parallelizing
combinatorial problems. This chapter covers the basic theory and illustrates a host of
examples. In many ways this chapter extends the notion that array syntax is more powerful
than scalar syntax by applying this syntax to the structures of a class of real-world problems.

At the mathematical level, a sparse matrix is simply a matrix with sufficiently many zeros that
it is sensible to save storage and operations by not storing the zeros or performing
unnecessary operations on zero elements such as x+0 or x*0. For example, the discretization
of partial differential equations typically results in large sparse linear systems of equations.
Sparse matrices and the associated algorithms are particularly useful for solving such
problems.

Sparse matrices additionally specify connections and relations among objects. Simple
discrete operations including data analysis, sorting, and searching can be expressed in the
language of sparse matrices.

Graphs and Sparse Matrices

Graphs are used for networks and relationships. Sparse matrices are the data structures
used to represent graphs and to perform data analysis on large data sets represented as
graphs.

Graphs: It’s all in the connections

In the following discussion, a “graph” is simply a group of discrete entities and their
connections. While standard, the term is not especially illuminating, so it may be helpful to
consider a graph as a “network”. Think of a phone network or a computer network or a social
Release 2.7 Star-P® Programming Guide for Use with MATLAB® 217

Graphs and Sparse Matrices
network. The most important thing to know are the names and who is connected to whom.
Formally, a graph is a set of nodes and edges. It is the information of who can directly
influence whom or at least who has a link to whom.

Consider the route map of an airline. The nodes are cities, the edges are plane routes.

The earth is a geometrical object, i.e. continuous, yet the important information for the airline
is the graph, the discrete object connecting the relevant cities. Next time you see a subway
map, think of the graph connecting the train stops. Next time you look at a street map think of
the intersections as nodes, and each street as an edge.

Electrical circuits are graphs. Connect up resistors, batteries, diodes, and inductors. Ask
questions about the resistance of the circuit. In high school one learns to follow Ohm’s law
and Ampere’s law around the circuit. Graph theory gives the bigger picture. We can take a
large grid of resistors and connect a battery across one edge. Looked at one way, this is a
discrete man-made problem requiring a purchase of electrical components.

The internet is a great source for graphs. We could have started with any communications
network: telegraphs, telephones, smoke signals... but let us consider the internet. The
internet can be thought of as the physical links between computers. The current internet is
composed of various subnetworks of connected computers that are connected at various
peering points. Run traceroute from your machine to another machine and take a walk along
the edges of this graph.

More exciting than the hardware connections are the virtual links. Any web page is a node;
hyperlinks take us from one node to another. Web pages live on real hardware, but there is
no obvious relationship between the hyperlinks connecting web pages and the wires
connecting computers.

The graph that intrigues us all is the social graph: in its simplest form, the nodes are people.
Two people are connected if they know each other.

A graph may be a discretization of a continuous structure. Think of the graph whose vertices
are all the USGS benchmarks in North America, with edges joining neighboring benchmarks.
This graph is a mesh: its vertices have coordinates in Euclidean space, and the discrete
graph approximates the continuous surface of the continent. Finite element meshes are the
key to solving partial differential equations on (finite) computers.

Graphs can represent computations. Compilers use graphs whose vertices are basic blocks
of code to optimize computations in loops. The heart of a finite element computation might be
the sparse matrix-vector multiplication in an iterative linear solver; the pattern of data
dependency in the multiplication is the graph of the mesh.

Oftentimes graphs come with labels on their edges (representing length, resistance, cost) or
vertices (name, location, cost).

There are so many examples -- some are discrete from the start, others are discretizations of
continuous objects, but all are about connections.
218 Star-P® Programming Guide for Use with MATLAB® Release 2.7

Graphs and Sparse Matrices
Sparse Matrices: Representing Graphs and General Data Analysis

Consider putting everybody at a party in a circle holding hands and each person rates how
well they know the person on the left and right with a number from 1 to 10.

Each person can be represented with the index i, and the rating of the person on the right can
be listed as Ai,i+1 while the person on the left is listed as Ai,i-1.

As an example;

PERSON Right Left
1 5 6
2 3 2
3 1 9
4 2 7

In serial MATLAB

>> i = [1 2 3 4]; j = [2 3 4 1]; k = [4 1 2 3];
>> r = [5 3 1 2];
>> l = [6 2 9 7];
>> sparse([i i],[j k], [r l])
ans =
 (2,1) 2
 (4,1) 2
 (1,2) 5
 (3,2) 9
 (2,3) 3
 (4,3) 7
 (1,4) 6
 (3,4) 1
>> full(ans)
ans =
 0 5 0 6
 2 0 3 0
 0 9 0 1
 2 0 7 0

With Star-P®

>> n = 1000*p;
>> i = 1:n;
>> j = ones(1,n);
>> j(1,1:end-1) = i(1,2:end); j(1,end) = i(1,1);
>> k = ones(1,n);
>> k(1,2:end) = i(1,1:end-1); k(1,1) = i(1,end);
>> r = rand(1,n);
>> l = rand(1,n);
>> A = sparse([i i], [j k], [r l])
A =
 dsparse object: 1000p-by-1000
Release 2.7 Star-P® Programming Guide for Use with MATLAB® 219

Graphs and Sparse Matrices
The next example illustrates a circular network with unsymmetric weights.

>> B=spones(A)

gives the network without weights, and

>> [i,j] = find(B)
i =
 ddense object: 2000p-by-1
j =
 ddense object: 2000p-by-1

undoes the sparse construction.

Data Analysis and Comparison with Pivot Tables

Consider the following “database” style application:

Imagine we have an airline that flies certain routes on certain days of the week and we are
interested in the revenue per route and per day. We begin with a table which can be simply
an n x 3 array:

Route Day Revenue in Thousands
1 0 3
1 1 5
1 3 4
1 5 5
2 1 3
2 2 3
2 4 3
2 6 3
3 6 4
3 0 4

In Microsoft Excel, there is a little known feature that is readily available on the Data menu
called PivotTable which allows for the analysis of such data.

MATLAB and Star-P® users can perform the same analysis with sparse matrices.

First we define the three column array:
>> m = [1 0 3; 1 1 5; 1 3 4; 1 5 5; 2 1 3; 2 2 3; 2 4 3; 2 6 3; 3 6 4; 3 0 4]
m =
 1 0 3
 1 1 5
 1 3 4
 1 5 5
 2 1 3
 2 2 3
 2 4 3
 2 6 3
220 Star-P® Programming Guide for Use with MATLAB® Release 2.7

Graphs and Sparse Matrices
 3 6 4
 3 0 4

Then we create the sparse matrix a:

>> a = sparse(m(:,1),m(:,2)+1,m(:,3))
a =
 (1,1) 3
 (3,1) 4
 (1,2) 5
 (2,2) 3
 (2,3) 3
 (1,4) 4
 (2,5) 3
 (1,6) 5
 (2,7) 3
 (3,7) 4

How much does each of the three routes make as revenue:

>> sum(a')
ans =
 (1,1) 17
 (1,2) 12
 (1,3) 8

Or what is the total for each day:

>> sum(a)
ans =
 (1,1) 7
 (1,2) 8
 (1,3) 3
 (1,4) 4
 (1,5) 3
 (1,6) 5
 (1,7) 7

Or what is the total revenue:

 >> sum(a(:))
ans =
 (1,1) 37

Since Star-P® extends the functionality of sparse matrices to parallel machines, one can do
very sophisticated data analysis on large data sets using Star-P®.

Note that the sparse command also adds data with duplicate indices.

If the sparse constructor encounters duplicate (i,j) indices, the corresponding nonzero
values are added together. This is sometimes useful for data analysis; for example, here is an
Release 2.7 Star-P® Programming Guide for Use with MATLAB® 221

Graphs and Sparse Matrices
example of a routine that computes a weighted histogram using the sparse constructor. In
the routine, bin is a vector that gives the histogram bin number into which each input
element falls. Notice that h is a sparse matrix with just one column! However, all the values of
w that have the same bin number are summed into the corresponding element of h. The
MATLAB function bar plots a bar chart of the histogram.

>> type histw
function [yc, h] = histw(y, w, m)
% HISTW Weighted histogram.
% [YC, H] = HISTW(Y, W, M) plots a histogram of the data in Y weighted
% with W, using M boxes. The output YC contains the bin centers, and
% H the sum of the weights in each bin.
%
% Example:
% y = rand(1e5,1);
% histw(y,y.^2,50);
dy = (max(y) - min(y)) / m;
bin = max(min(floor((y - min(y)) / dy) + 1, m), 1);
yy = min(y) + dy * (0:m);
yc = (yy(1:end-1) + yy(2:end)) / 2;
h = sparse(bin, 1, w, m, 1);
bar(yc, full(h));

Multiplication of a sparse matrix by a dense vector (sometimes called “matvec”) turns out to
be useful for many kinds of data analysis that have nothing directly to do with linear algebra.
We will see several examples later that have to do with paths or searches in graphs. Here is
a simple example that has to do with the nonzero structure of a matrix.

Suppose G is a dsparse matrix with nr rows and nc columns. For each row, we want to
compute the average of the column indices of the nonzeros in that row (or zero if the whole
row is zero, say). The result will be a ddense vector with nr elements. The following code
does this. (The first line replaces each nonzero in G with a one; it can be omitted if, say, G is
the adjacency matrix of a graph or a 0/1 logical matrix.)

>> Gpp = sprandn(1e6*p,1e4,0.01);
>> Gpp = spones(Gpp);
>> [nr, nc] = size(Gpp);
>> vpp = (1:nc*p)';
>> epp = ones(nc*p,1);
>> rowcounts = Gpp * epp;
>> indexsums = Gpp * vpp;
>> averageindex = indexsums ./ max(rowcounts, 1);

Since epp is a column of all ones, the first matvec Gpp*epp computes the number of
nonzeros in each row of Gpp. The second matvec Gpp*vpp computes the sum of the column
indices of the nonzeros in each row. The *max* in the denominator of the last line makes
averageindex zero whenever a row has no nonzeros.
222 Star-P® Programming Guide for Use with MATLAB® Release 2.7

Graphs and Sparse Matrices
Laplacian Matrices and Visualizing Graphs

The Laplacian matrix is a matrix associated with an undirected graph. Like the adjacency
matrix, it is square and symmetric and has a pair of nonzeros (i,j) and (j,i) for each edge (i,j) of
the graph. However, the off-diagonal nonzero elements of the Laplacian all have value -1,
and the diagonal element Li,i is the number of edges incident on vertex i. If A is the adjacency
matrix of an undirected graph, one way to compute the Laplacian matrix is with the following:

 >> L = -spones(A);
 >> L = L - diag(diag(L));
 >> L = L + diag(sum(L));

This code is a little more general than it needs to be -- it doesn’t assume that all the nonzeros
in A have value 1, nor does it assume that the diagonal of A is zero. If both of these are true,
as in a proper adjacency matrix, it would be enough to say:

 >> L = diag(sum(A)) - A;

The Laplacian matrix has many algebraic properties that reflect combinatorial properties of
the graph. For example, it is easy to see that the sums of the rows of L are all zero, so zero is
an eigenvalue of L (with an eigenvector of all ones). It turns out that the multiplicity of zero as
an eigenvalue is equal to the number of connected components of the graph. The other
eigenvalues are positive, so L is a positive semidefinite matrix. The eigenvector
corresponding to the smallest nonzero eigenvalue has been used in graph partitioning
heuristics.

For a connected graph, the eigenvectors corresponding to the three smallest Laplacian
eigenvalues can be used as vertex coordinates (the coordinates of vertex number i are (xi, yi,
zi), where x, y, and z are the eigenvectors), and the result is sometimes an interesting picture
of the graph. Figure B-1: is an example of this technique applied to the graph created in
Kernel 1 of the SSCA#2 benchmark.
Release 2.7 Star-P® Programming Guide for Use with MATLAB® 223

On Path Counting
Figure B-1: 8192-vertex graph from Kern1 plotted with Fiedler coordinates

On Path Counting

You may want to know how many paths connect two nodes in a graph. The incidence matrix I
is useful for this calculation, and is defined as:

Iij = {1 if node i is connected to node j, otherwise 0}

The matrix a in "Sparse Matrices: Representing Graphs and General Data Analysis" is
actually an adjacency matrix. For any particular path length k, each element of I^k represents
the number of paths that connect node i to node j.

>> a = spones(sprandn(100*p,100,0.1));
>> b = a^3
b =
 ddense object: 100-by-100p
>> b(14,23)
ans =
 4
>> nnz(b)
ans =
 9928

In this example there are 11 paths of length 3 that connect nodes 14 and 23. Another
characteristic of the graph that can be gleaned from this calculation is that almost all of the
nodes are reachable from all other nodes with a path of length 3 (9946 out of 10000 entries).
224 Star-P® Programming Guide for Use with MATLAB® Release 2.7

Symbols
* , overloaded, 41
*p syntax, 2, 28

A
about the Star-P® MATLAB® Programming
Guide, 5
accuracy of Star-P® routines, 89
application example

not using Star-P, 209
using ppeval, 213
using Star-P, 212

application examples, 207
array bounds, distributed, 30
array bounds variable, distributed, 28
assignments to p, 26

B
bcast, 137, 151

C
C, 2, 4
C++, 2, 4
C++ as task parallel engine, 72
calculus of distribution, 44
calling non-MATLAB functions within ppeval,
73
cell arrays, using in task parallel, 85
changing/examining distributed matrices, 24
circshift, 102
client/server messages, excessive, 93
client vs. server variables, ppeval, 66
cluster configurations, command line options,
19
coarse-grained parallelism, 59
column distribution of matrices, 33
combining data distribution mechanisms, 36
command line options

cluster configurations, 19
command line options, examples, 18
communication among processors in the paral-
lel server, 101
communication between the Star-P® client
and server, 98
communication dependencies, maintaining
awareness of, 98
complex number data, 27
compressed sparse row format, 34, 35

computation of eigenvectors for non-Hermitian
matrices, 90
configuration, user specific Star-P® start-up,
14
creating distributed arrays, 28
cumsum, 82

D
d

Star-P® naming conventions, distrubtued,
22

data distribution mechanisms, combining, 36
data movement functions, 147
data oarallelism with Star-P® and MATLAB, 2
data parallelism with Star-P® and MATLAB, 21
dcell, 36
dddense

propagation of distribution, 44
ddense, 38, 39, 44
ddensend, 34, 38, 44

propagation of distribution, 44
deep copy vs. shallow copy, incompatibility of
Star-P® and MATLAB, 32
diag, 30
distrbutions, types of, 32
distributed and local data, mixing, 37
distributed array bounds, 30
distributed array bounds variable, 28
distributed arrays, creating, 28
distributed attribute, propagating the, 41
distributed cell objects, 36
distributed classes used by Star-P®, 38
distributed data creation routines, 29
distributed dense matrices and arrays, 32
distributed dense multidimensional arrays, 34
distributed matrices, examining/changing, 24
distributed sparse matrices

sparse matrices
distributed, 34

distribution, propagation of, 44
dlayout, 28, 38, 40
dsparse, 34, 38, 39, 44

propagation of distribution, 44

E
eigs, 41
embarrassingly parallel, 4
enhanced performance profiling in Star-P®,
225 Star-P® Programming Guide for Use with MATLAB® Release 2.7

103
examining/changing distributed matrices, 24
examining Star-P® data, 22
excessive client/server messages, 93
excluding nodes in a cluster, 17
explicit data movement with ppback and pp-
front, 49
extending MATLAB with Star-P®, 2
external libraries in task parallel codes, 89
eye, 29

F
fclose, 53
FEM, finite element method, 117
FFT, 102
fft, 41
fopen, 53
for loop into a ppeval call, transforming, 61
Fortran, 2, 4, 78
fread, 53
frewind, 53
fseek, 135, 138
fwrite, 53

G
global array syntax, 4
global variables for task parallel operations, 75
graphs and sparse matrices, 217
graphs - it’s all in the connections, 217

H
HDF5

converting data from other formats to, 56
differences from MATLAB support, 56

HDF5, Hierachical Data Format Version 5, 53
HDF5, limitations with Star-P®, 56
HDF5 file, querying variables stored inside, 55
HDF5 file, reading variables from, 54
HDF5 file, representation of data in, 55

complex data, 55
multidimensional arrays, 55
sparse matrices, 56

HDF5 file, writing variables to, 54
Hilbert matrix, 23
histc, 41, 82
horzcat, 29, 102

I
ill-conditioned or singular operations, 90
image processing algorithm, 207
implicit communication, 99
implicit data movement, 93
indexing into distributed matrices or arrays,
distributed matrices, indexing into, 30
indexing operations, 48
input arguments to ppeval, 64

L
launching Star-P® with a MATLAB .m script, 19
load, 28
loading and saving data on the parallel server,
51
local and distributed data, mixing, 37
logical indexing, 49

M
machine file

path, 17
user default, 17

MATLAB® functions, supported, 161
MATLAB as task parallel engine, 91
MATLAB with Star-P, extending, 2
maximizing performance of Star-P® code, 98
memory issues, MathWorks technical notes,
84
memory issues, solving large problems, 84
meshgrid, 29
message passing, 4
MIMD, 59
mixing local and distributed data, 37
monitor the server, UNIX commands, 132
monte carlo simulations, 5
MPI, 2, 4
multiple instruction multiple data, 59

N
nnz, 31
node-oriented languages, 4
nodes in a cluster

excluding, 17
specifying, 17
specifying a range, 17
specifying a set, 17

non-Hermitian eigenvalue problems, 90
non-MATLAB function within ppeval, calling, 73
226 Star-P® Programming Guide for Use with MATLAB® Release 2.7

non-uniqueness of MATLAB and Star-P® rou-
tines, 89
np, 25, 139

Star-P® functions
np, 135

O
Octave as task parallel engine, 71
ones, 29, 37, 41
overloaded operators

*, 41
ones, 41

P
p, 24, 135, 139
parallel computing 101, 4

data parallel computation, 4
message passing, 4
task parallel computation, 4

password, user, 10, 11
patmatch_calc.m, 211
patmatch_color_noStarP.m, 210
patmatch_color_ppeval.m, 214
patmatch_colordemo_Star-P.m, 212
pattern matching, 207
performance and productivity, 77
performance bottlenecks, eliminating using pp-
perf, 117
performance profiling in Star-P®, enhanced,
103
performance tuning and monitoring, 91

client/server monitoring, 91
diagnostics and performance, 91

permute, 102
per processe execution for ppeval, 72
pp, 26, 135, 139

Star-P® naming conventions, 22
ppback, 28, 136, 147

warning messages, 51
ppback, explicit data movement with, 49
ppbench, 135
ppchangedist, 137, 148

warning messages, 51
ppeval, 2, 59, 137, 152

calling non-MATLAB functions within, 73
client vs. server variables, 66
distribution of input variables, 67
input arguments, 64

broadcasting, 65
default behavior, 64
splitting, 64

known differences between MATLAB and
Octave functions, 153
output arguments, 67
per process execution, 72
requirements of functions passed to, 64
syntax and behavior, 63
transforming a for loop into a, 61

ppeval_tic, 97
ppeval_toc, 97
ppeval, about, 59
ppeval and ppevalc functions, the mechanism
for task parallelism, 59
ppevalc, 59
ppevalcloadmodule, 138, 154
ppevalcunloadmodule, 138, 154
ppevalsplit, 69, 137, 154
ppfopen, 52, 136, 145
ppfront, 24, 136, 148

warning messages, 51
ppfront, explicit data movement with, 49
ppgetlog, 136, 141
ppgetlogpath, 136, 142
ppgetoption, 136, 141
pph5read, 54, 137, 150
pph5whos, 55, 136, 146
pph5write, 54, 137, 149
ppinvoke, 136, 143
ppload, 28, 51, 137, 150
pploadpackage, 143
ppperf, 103, 106, 131, 138, 155

displaying performance statistics, 106
gathering performance statistics, 106
graphical mode, 113

lessons learned, 117, 131
interpretation of output, 108
lessons learned, 113
output preamble, 108
performance process measurement, 110
performance time measurement, 109
Star-P® functions

ppperf, 155
using, 103
using to eliminate performance bottle-
necks, 117

ppperf clear, 106, 132, 155
ppperf graph off, 132, 156
Release 2.7 Star-P® Programming Guide for Use with MATLAB® 227

ppperf graph on, 123, 156
ppperf off, 106, 132, 155
ppperf report, 106, 107, 132, 156
ppperf report detail, 107, 132, 156
ppperf resume, 155
ppprofile, 94, 103, 105, 138, 156
ppquit, 136, 145
ppsave, 51, 137, 151
ppsetoption, 136, 141

configuring for high performance, 90
warning messages, 51

ppstartup, 14
pptic, 91, 103, 138, 157
pptoc, 91, 103, 138, 157
ppunloadpackage, 136, 144
ppwhos, 22, 136, 145
profile, 103
propagating the distributed attribute, 41
propagation of distrbution

exceptions for functions with multiple argu-
ments, 47

propagation of distribution, 44
ddense, 44
ddensend, 44
dsparse, 44
examples for functions of multiple argu-
ments, 46
examples for functions of one argument, 45
functions of multiple arguments, 45
functions of one argument, 44
rules for, 46
summary, 49

propgation of distribution
functions of one argument, exceptions, 45

ps, UNIX command for monitoring the server,
133
Python, 1

R
rand, 29
randn, 29
real number data, 27
requirements of functions passed to ppeval, 64
reshape, 30, 102
restructuring serial MATLAB code, 78
reusing existing scripts, 23
reusing scripts, 42
round-off errors, 90

row distribution of matrices, 33
rules for propagation of distribution, 46

S
saving and loading data on the parallel server,
51
serial MATLAB code, restructuring, 78
server

configuring data I/O path, 16
server/client messages, excessive, 93
server vs. client variables, ppeval, 66
shallow copy vs. deep copy, incompatibility of
Star-P® and MATLAB, 32
singleton dimensions, 44
solving large problems - memory issues, 84
solving large sparse matrix and combinatorial
problems with Star-P, 217
sort, 102
sparse matrices

data analysis and comparison with pivot ta-
bles, 220
graphs, and, 217
HDF5 file, representation of data in, 56
laplacian matrices, visualizing graphs, and,
223
on path counting, 224
representing graphs and general data anal-
ysis, 219

sparse matrices, Star-P® representation of, 35
special variables, p and np, 24
specifying a range of nodes in a cluster, 17
specifying a set of nodes in a cluster, 17
specifying nodes in a cluster, 17
speye, 29
split, 2, 137, 152
splitting on a scalar, workarounds for, 75
sprand, 29, 37
sprandn, 29
Star-P®

sparse matrices, 35
support, 3

Star-P® functions, 135
basic server function summary, 135
bcast, 137, 151
data movement functions, 147
fseek, 135, 138
np, 25, 135, 139
p, 24, 139
228 Star-P® Programming Guide for Use with MATLAB® Release 2.7

perfomance functions, 155
pp, 26, 135, 139
ppback, 28, 136, 147

warning messages, 51
ppchangedist, 137, 148

warning messages, 51
ppeval, 2, 59, 137, 152

broadcasting input arguments, 65
calling non-MATLAB functions within,
73
client vs. server variables, 66
distribution of input variables, 67
input agruments

default behavior of, 64
input arguments, 64

broadcasting, 65
splitting, 64

known differences between MATLAB
and Octave functions, 153
output arguments, 67
per process execution, 72
requirements of functions passed to, 64
splitting input arguments, 64
syntax and behavior, 63

ppeval_tic, 97
ppeval_toc, 97
ppevalc, 59
ppevalcloadmodule, 138, 154
ppevalcunloadmodule, 138, 154
ppevalsplit, 69, 137, 154
ppfopen, 52, 136, 145
ppfront, 24, 136, 148

warning messages, 51
ppgetlog, 136, 141
ppgetlogpath, 136, 142
ppgetoption, 136, 141
pph5read, 54, 137, 150
pph5whos, 55, 136, 146
pph5write, 54, 137, 149
ppinvoke, 136, 143
ppload, 28, 51, 137, 150
pploadpackage, 143
ppper, 155
ppperf, 103, 106, 131, 138

displaying performance statistics, 106
gathering performance statistics, 106
graphical mode, 113
graphical mode, lessons learned, 117,

131
interpretation of output, 108
lessons learned, 113
output preamble, 108
performance process measurement,
110
performance time measurment, 109
using to eliminate performance bottle-
necks, 117

ppperf, using, 103
ppperf clear, 106, 132, 155
ppperf graph off, 132, 156
ppperf graph on, 123, 156
ppperf off, 106, 132, 155
ppperf report, 106, 107, 132, 156
ppperf report detail, 107, 132, 156
ppperf resume, 155
ppprofile, 94, 103, 105, 138, 156
ppquit, 136, 145
ppsave, 51, 137, 151
ppsetoption, 136, 141

configuring for high performance, 90
warning messages, 51

ppstartup, 14
pptic, 91, 103, 138, 157
pptoc, 91, 103, 138, 157
ppunloadpackage, 136, 144
ppwhos, 22, 136, 145
split, 2, 137, 152
task parallel functions, 151

Star-P® naming conventions
d, distributed, 22, 60
pp, 22, 60

starp command, 10, 15
configuring data I/O directory, 16
data I/O directory, 16

starting Star-P® with MATLAB, 7
on a Linux client system, 7
on a Windows client system, 10

startup.m, 14
start-up configuration, user specific, 14
string arrays, workarounds for, 75
structs, using in task parallel, 85
subsref, 48
support, Star-P®, 3
supported data types, 27
supported MATLAB® functions, 161
support website, 161
svd, 41
Release 2.7 Star-P® Programming Guide for Use with MATLAB® 229

svds, 41

T
task parallel, global variables, 75
task parallel codes, tips for, 85
task parallel engine

choosing Octave, 71
using C++ for compiled codes, 72

task parallel engine, choosing MATLAB, 91
task parallelism with Star-P® and MATLAB, 2,
59
task parallelism workarounds and additional in-
formation, 75
task parallel workarounds and additional infor-
mation

splitting on a scalar, 75
string arrays, 75

tic/toc, 103
tips and tools for high performance Star-P®
code, 77
tips for data parallel codes, 79

vectorization, 79
tips for task parallel codes, 85

use of structs and cell arrays, 85
using external libraries, 89
vectorize for loops inside of ppeval calls, 86

top, UNIX command for monitoring the server,
133
transforming a for loop into a ppeval call, 61
transpose, 102
types of distributions, 32

U
UNIX commands to monitor the server, 132
user specific Star-P® start-up configuration, 14

V
vectorization, 79
vectorization, MathWorks online tutorial, 79
vectorize for loops inside of ppeval calls, 86
vertcat, 29
Very High Level Languages (VHLL), 1

W
which, 39
whos, 22

Z
zeros, 29, 37
230 Star-P® Programming Guide for Use with MATLAB® Release 2.7

	Star-P® Introduction
	Extending MATLAB with Star-P®
	Parallel Computing Basics
	About the Star-P® Programming Guide for Use with MATLAB®

	Starting Star-P® with MATLAB
	Getting Help at the IDE Window
	Using the HTML-Based Help
	Using the Text-Based Help
	Getting Command Syntax Information
	Syntax grammar and conventions used in the Star-P® documentation
	Get syntax information for a particular function

	Starting Star-P® on a Linux Client System
	Starting Star-P® on a Windows Client System
	Star-P® Dashboard
	Star-P® Sample Session
	User Specific Star-P® Start-Up Configuration
	Star-P® Start-Up Command Line Options
	Launching Star-P® with a MATLAB .m script
	Cluster Configurations

	Data Parallelism with Star-P® and MATLAB
	Star-P® Naming Conventions
	Examining Star-P® Data
	Reusing Existing Scripts
	Examining/Changing Distributed Matrices

	Special Variables: p and np
	Assignments to p

	Supported Data Types
	Real and Complex Data

	Creating Distributed Arrays
	The *p Syntax
	Distributed Data Creation Routines
	Distributed Array Bounds
	Indexing into Distributed Matrices or Arrays

	Types of Distributions
	Distributed Dense Matrices and Arrays
	Row distribution
	Column distribution

	Distributed Dense Multidimensional Arrays
	Distributed Sparse Matrices
	How Star-P® Represents Sparse Matrices
	Distributed Cell Objects (dcell)

	Combining Data Distribution Mechanisms
	Mixing Local and Distributed Data
	Distributed Classes used by Star-P®
	Propagating the Distributed Attribute

	Propagation of Distribution
	Functions of One Argument
	Functions of Multiple Arguments
	Indexing Operations
	Summary for Propagation of Distribution

	Explicit Data Movement with ppback and ppfront
	Loading And Saving Data on the Parallel Server
	HDF5, Hierarchical Data Format Version 5
	Representation of data in the HDF5 file
	Limitations
	Differences from MATLAB HDF5 support
	Converting data from other formats to HDF5

	Task Parallelism with Star-P® and MATLAB
	The ppeval Function: The Mechanism for Task Parallelism
	Star-P® Naming Conventions
	Transforming a for Loop into a ppeval Call
	Step 1: Identify a for loop that is embarrassingly parallel.
	Step 2: Determine the input and output variable of the loop
	Step 3: Transform the body of the for loop into a function
	Step 4: Call function defined in Step 3 with ppeval

	ppeval Syntax and Behavior
	ppeval Syntax Grammar
	Requirements of Functions Passed to ppeval
	Input Arguments
	Default Behavior
	Splitting
	Broadcasting
	Supported Input Argument Types
	Serial ppeval of Functions with Scalar Inputs
	Client vs. Server Variables
	Distribution of input variables

	Output Arguments
	Examples of ppeval Usage

	ppevalsplit
	Choosing Your Task Parallel Engine (TPE)
	Star-P® M TPE
	Star-P® Octave Engine
	C/C++ Engine for Running Compiled C/C++ Package Functions

	Per Process Execution
	Calling Non-”M” Functions from within ppeval
	Workarounds and Additional Information
	String Arrays
	Splitting on a Scalar
	Global Variables

	Tips and Tools for High Performance Star-P® Code
	Performance and Productivity
	Tips for Data Parallel Code
	Vectorization
	Star-P® Solves the Breakdown of Serial Vectorization

	Solving Large Problems: Memory Issues

	Tips for Task Parallel Code
	Use of Structs and Cell Arrays
	Vectorize for Loops Inside of ppeval Calls
	Performance Note on Iteration Timing

	Using External Libraries
	Integer Arithmetic in Star-P® Compared with MATLAB®
	Accuracy of Star-P® Routines
	Configuring ppsetoption for High Performance
	Performance Tuning and Monitoring
	Diagnostics and Performance
	Client/Server Performance Monitoring
	Coarse Timing with pptic and pptoc
	Summary and Per-Server-Call Timings with ppprofile
	Maximizing Performance

	Maintaining Awareness of Communication Dependencies
	Communication between the Star-P® Client and Server
	Implicit Communication
	Communication Among the Processors in the Parallel Server

	Enhanced Performance Profiling in Star-P®
	Using ppperf
	Interpretation of ppperf's output
	Using ppperf's graphical mode
	Using ppperf to Eliminate Performance Bottlenecks
	ppperf command summary

	UNIX Commands to Monitor the Server

	Star-P® Functions
	Basic Server Functions Summary
	General Functions
	fseek
	np
	p
	pp
	ppbench
	ppclear
	ppgetoption
	ppsetoption
	ppgetlog
	ppgetlogpath
	ppinvoke
	pploadpackage
	ppunloadpackage
	ppfopen
	ppquit
	ppwhos
	pph5whos

	Data Movement Functions
	ppback
	ppfront
	ppchangedist
	pph5write
	pph5read
	ppload
	ppsave

	Task Parallel Functions
	bcast, ppbcast
	split, ppsplit
	ppeval
	ppevalsplit
	ppevalcloadmodule
	ppevalcunloadmodule

	Performance Functions
	ppperf
	ppprofile
	pptic/pptoc

	Supported MATLAB® Functions
	Data Parallel Functions Listed Alphabetically
	Task-Parallel Functions Listed by Default Platform TPE

	Application Examples
	Application Example: Image Processing Algorithm
	How the Analysis Is Done

	Application Examples
	Images For Application Examples
	M Files for the Application Examples
	Application Example Not Using Star-P®
	patmatch_color_noStarP.m File
	patmatch_calc.m

	Application Example Using Star-P®
	patmatch_colordemo_StarP.m File

	Application Example Using ppeval
	About ppeval
	About the ppeval Example
	patmatch_color_ppeval.m

	Solving Large Sparse Matrix and Combinatorial Problems with Star-P®
	Graphs and Sparse Matrices
	Graphs: It’s all in the connections
	Sparse Matrices: Representing Graphs and General Data Analysis
	Data Analysis and Comparison with Pivot Tables
	Laplacian Matrices and Visualizing Graphs

	On Path Counting
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	Z

